湿气压缩机模型验证

Martin Bakken, T. Bjørge, L. Bakken
{"title":"湿气压缩机模型验证","authors":"Martin Bakken, T. Bjørge, L. Bakken","doi":"10.1115/gt2019-90354","DOIUrl":null,"url":null,"abstract":"\n The continuous demand for oil and gas forces the petroleum industry to develop new and cost-efficient technologies to increase recovery from new fields and enhance extraction from existing fields. Subsea wet gas compression stands out as a promising solution to increase field extraction, utilize remote regions and reduce costs.\n Today, a few subsea compressor systems are already operating while several new installations are expected within the next years. This creates a need for dynamic simulation tools to ensure proper system design and facilitate production. This paper presents the model setup for the wet gas compressor test facility at the Norwegian University of Science and Technology (NTNU). The test facility is an open loop configuration consisting of a single shrouded centrifugal impeller, a vaneless diffuser and a circular volute. The fluid is a mixture of ambient air and water. The analysis presented here validates the dynamic model behavior against transient experimental test cases, which include step changes in liquid content and driver trip in both wet and dry conditions. Further, the discharge valve performance has been analyzed in both dry and wet gas flow.\n The test reveals that the dynamic model is able to operate in a stable manner while showing a close correspondence to the transient test cases. Care should be taken in utilizing dry gas valve characteristics in multiphase flows as increased liquid content has a distinct impact on the valve performance.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wet Gas Compressor Model Validation\",\"authors\":\"Martin Bakken, T. Bjørge, L. Bakken\",\"doi\":\"10.1115/gt2019-90354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The continuous demand for oil and gas forces the petroleum industry to develop new and cost-efficient technologies to increase recovery from new fields and enhance extraction from existing fields. Subsea wet gas compression stands out as a promising solution to increase field extraction, utilize remote regions and reduce costs.\\n Today, a few subsea compressor systems are already operating while several new installations are expected within the next years. This creates a need for dynamic simulation tools to ensure proper system design and facilitate production. This paper presents the model setup for the wet gas compressor test facility at the Norwegian University of Science and Technology (NTNU). The test facility is an open loop configuration consisting of a single shrouded centrifugal impeller, a vaneless diffuser and a circular volute. The fluid is a mixture of ambient air and water. The analysis presented here validates the dynamic model behavior against transient experimental test cases, which include step changes in liquid content and driver trip in both wet and dry conditions. Further, the discharge valve performance has been analyzed in both dry and wet gas flow.\\n The test reveals that the dynamic model is able to operate in a stable manner while showing a close correspondence to the transient test cases. Care should be taken in utilizing dry gas valve characteristics in multiphase flows as increased liquid content has a distinct impact on the valve performance.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-90354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对石油和天然气的持续需求迫使石油行业开发新的、具有成本效益的技术,以提高新油田的采收率,并提高现有油田的采收率。海底湿气压缩作为一种很有前途的解决方案,在增加油田开采、利用偏远地区和降低成本方面脱颖而出。目前,一些海底压缩机系统已经投入使用,预计在未来几年内将有几个新装置投入使用。这就产生了对动态仿真工具的需求,以确保适当的系统设计和促进生产。本文介绍了挪威科技大学(NTNU)湿气压缩机试验装置的模型建立。试验装置为开环结构,由一个单冠离心叶轮、一个无叶扩散器和一个圆形蜗壳组成。这种液体是周围空气和水的混合物。本文的分析验证了动态模型在瞬态实验测试中的行为,包括液体含量的阶跃变化和驾驶员在湿和干条件下的行程。进一步分析了排气阀在干湿两种工况下的性能。测试表明,动态模型能够以稳定的方式运行,同时显示出与瞬态测试用例的密切对应。在多相流中使用干气阀特性时应小心,因为液体含量的增加对阀的性能有明显的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wet Gas Compressor Model Validation
The continuous demand for oil and gas forces the petroleum industry to develop new and cost-efficient technologies to increase recovery from new fields and enhance extraction from existing fields. Subsea wet gas compression stands out as a promising solution to increase field extraction, utilize remote regions and reduce costs. Today, a few subsea compressor systems are already operating while several new installations are expected within the next years. This creates a need for dynamic simulation tools to ensure proper system design and facilitate production. This paper presents the model setup for the wet gas compressor test facility at the Norwegian University of Science and Technology (NTNU). The test facility is an open loop configuration consisting of a single shrouded centrifugal impeller, a vaneless diffuser and a circular volute. The fluid is a mixture of ambient air and water. The analysis presented here validates the dynamic model behavior against transient experimental test cases, which include step changes in liquid content and driver trip in both wet and dry conditions. Further, the discharge valve performance has been analyzed in both dry and wet gas flow. The test reveals that the dynamic model is able to operate in a stable manner while showing a close correspondence to the transient test cases. Care should be taken in utilizing dry gas valve characteristics in multiphase flows as increased liquid content has a distinct impact on the valve performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信