Ernst Houtgast, V. Sima, G. Marchiori, K. Bertels, Z. Al-Ars
{"title":"异构计算平台上高效加速基因组短读映射","authors":"Ernst Houtgast, V. Sima, G. Marchiori, K. Bertels, Z. Al-Ars","doi":"10.1109/FCCM.2016.17","DOIUrl":null,"url":null,"abstract":"We propose a novel FPGA-accelerated BWA-MEM implementation, a popular tool for genomic data mapping. The performance and power-efficiency of the FPGA implementation on the single Xilinx Virtex-7 Alpha Data add-in card is compared against a software-only baseline system. By offloading the Seed Extension phase onto the FPGA, a two-fold speedup in overall application-level performance is achieved and a 1.6x gain in power-efficiency. To facilitate platform and tool-agnostic comparisons, the base pairs per Joule unit is introduced as a measure of power-efficiency. The FPGA design is able to map up to 34 thousand base pairs per Joule.","PeriodicalId":113498,"journal":{"name":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Power-Efficient Accelerated Genomic Short Read Mapping on Heterogeneous Computing Platforms\",\"authors\":\"Ernst Houtgast, V. Sima, G. Marchiori, K. Bertels, Z. Al-Ars\",\"doi\":\"10.1109/FCCM.2016.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel FPGA-accelerated BWA-MEM implementation, a popular tool for genomic data mapping. The performance and power-efficiency of the FPGA implementation on the single Xilinx Virtex-7 Alpha Data add-in card is compared against a software-only baseline system. By offloading the Seed Extension phase onto the FPGA, a two-fold speedup in overall application-level performance is achieved and a 1.6x gain in power-efficiency. To facilitate platform and tool-agnostic comparisons, the base pairs per Joule unit is introduced as a measure of power-efficiency. The FPGA design is able to map up to 34 thousand base pairs per Joule.\",\"PeriodicalId\":113498,\"journal\":{\"name\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2016.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2016.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-Efficient Accelerated Genomic Short Read Mapping on Heterogeneous Computing Platforms
We propose a novel FPGA-accelerated BWA-MEM implementation, a popular tool for genomic data mapping. The performance and power-efficiency of the FPGA implementation on the single Xilinx Virtex-7 Alpha Data add-in card is compared against a software-only baseline system. By offloading the Seed Extension phase onto the FPGA, a two-fold speedup in overall application-level performance is achieved and a 1.6x gain in power-efficiency. To facilitate platform and tool-agnostic comparisons, the base pairs per Joule unit is introduced as a measure of power-efficiency. The FPGA design is able to map up to 34 thousand base pairs per Joule.