半定正矩阵的JEVD和非负张量的CPD

Rémi André, L. Albera, Xavier Luciani, E. Moreau
{"title":"半定正矩阵的JEVD和非负张量的CPD","authors":"Rémi André, L. Albera, Xavier Luciani, E. Moreau","doi":"10.1109/SAM.2016.7569738","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly address the problem of Joint EigenValue Decomposition (JEVD) subject to nonnegative constraints on the eigenvalues of the matrices to be diagonalized. An efficient method based on the Alternating Direction Method of Multipliers (ADMM) is designed. ADMM provides an elegant approach for handling nonnegativity constraints, while taking advantage of the structure of the objective function. Numerical tests on simulated matrices show the interest of the proposed method for low Signal-to-Noise Ratio (SNR) values when the similarity transformation matrix is ill-conditioned. The ADMM was recently used for the Canonical Polyadic Decomposition (CPD) of nonnegative tensors leading to the ADMoM algorithm. We show through computer results that DIAG+, a semi-algebraic CPD method using our ADMM-based JEVD+ algorithm, will give a better estimation of factors than ADMoM in the presence of swamps. DIAG+ also appears to be less time-consuming than ADMoM when low-rank tensors of high dimensions are considered.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On JEVD of semi-definite positive matrices and CPD of nonnegative tensors\",\"authors\":\"Rémi André, L. Albera, Xavier Luciani, E. Moreau\",\"doi\":\"10.1109/SAM.2016.7569738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly address the problem of Joint EigenValue Decomposition (JEVD) subject to nonnegative constraints on the eigenvalues of the matrices to be diagonalized. An efficient method based on the Alternating Direction Method of Multipliers (ADMM) is designed. ADMM provides an elegant approach for handling nonnegativity constraints, while taking advantage of the structure of the objective function. Numerical tests on simulated matrices show the interest of the proposed method for low Signal-to-Noise Ratio (SNR) values when the similarity transformation matrix is ill-conditioned. The ADMM was recently used for the Canonical Polyadic Decomposition (CPD) of nonnegative tensors leading to the ADMoM algorithm. We show through computer results that DIAG+, a semi-algebraic CPD method using our ADMM-based JEVD+ algorithm, will give a better estimation of factors than ADMoM in the presence of swamps. DIAG+ also appears to be less time-consuming than ADMoM when low-rank tensors of high dimensions are considered.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究待对角化矩阵的特征值在非负约束下的联合特征值分解问题。设计了一种基于乘法器交替方向法(ADMM)的有效方法。ADMM为处理非负性约束提供了一种优雅的方法,同时利用了目标函数的结构。在模拟矩阵上的数值试验表明,当相似变换矩阵为病态时,所提出的方法对低信噪比(SNR)值很有兴趣。ADMM最近被用于非负张量的正则多进分解(CPD),从而产生了ADMoM算法。我们通过计算机结果表明,DIAG+是一种半代数CPD方法,使用我们基于admm的JEVD+算法,在存在沼泽的情况下比ADMoM给出更好的因子估计。当考虑高维的低秩张量时,DIAG+似乎比ADMoM更节省时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On JEVD of semi-definite positive matrices and CPD of nonnegative tensors
In this paper, we mainly address the problem of Joint EigenValue Decomposition (JEVD) subject to nonnegative constraints on the eigenvalues of the matrices to be diagonalized. An efficient method based on the Alternating Direction Method of Multipliers (ADMM) is designed. ADMM provides an elegant approach for handling nonnegativity constraints, while taking advantage of the structure of the objective function. Numerical tests on simulated matrices show the interest of the proposed method for low Signal-to-Noise Ratio (SNR) values when the similarity transformation matrix is ill-conditioned. The ADMM was recently used for the Canonical Polyadic Decomposition (CPD) of nonnegative tensors leading to the ADMoM algorithm. We show through computer results that DIAG+, a semi-algebraic CPD method using our ADMM-based JEVD+ algorithm, will give a better estimation of factors than ADMoM in the presence of swamps. DIAG+ also appears to be less time-consuming than ADMoM when low-rank tensors of high dimensions are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信