V. Esmaeili, A. Assareh, M. Shamsollahi, M. Moradi, N. Arefian
{"title":"基于模糊规则的麻醉深度估计系统设计","authors":"V. Esmaeili, A. Assareh, M. Shamsollahi, M. Moradi, N. Arefian","doi":"10.1109/CIDM.2007.368942","DOIUrl":null,"url":null,"abstract":"Estimating the depth of anesthesia (DOA) is still a challenging area in anesthesia research. The objective of this study was to design a fuzzy rule based system which integrates electroencephalogram (EEG) features to quantitatively estimate the DOA. The proposed method is based on the analysis of single-channel EEG using frequency and time domain features as well as Shannon entropy measure. The fuzzy classifier is trained with features obtained from four subsets of data comprising well-defined anesthesia states: awake, moderate, general anesthesia, and isoelectric. The classifier extracts efficient fuzzy if-then rules and the DOA index is derived between 100 (full awake) to 0 (isoelectric) using fuzzy inference engine. To validate the proposed method, a clinical study has conducted on 22 patients to construct 4 subsets of reference states and also to compare the results with CSM monitor (Danmeter, Denmark), which has revealed satisfactory correlation with clinical assessments","PeriodicalId":423707,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Data Mining","volume":"28 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Designing a Fuzzy Rule Based System to Estimate Depth of Anesthesia\",\"authors\":\"V. Esmaeili, A. Assareh, M. Shamsollahi, M. Moradi, N. Arefian\",\"doi\":\"10.1109/CIDM.2007.368942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the depth of anesthesia (DOA) is still a challenging area in anesthesia research. The objective of this study was to design a fuzzy rule based system which integrates electroencephalogram (EEG) features to quantitatively estimate the DOA. The proposed method is based on the analysis of single-channel EEG using frequency and time domain features as well as Shannon entropy measure. The fuzzy classifier is trained with features obtained from four subsets of data comprising well-defined anesthesia states: awake, moderate, general anesthesia, and isoelectric. The classifier extracts efficient fuzzy if-then rules and the DOA index is derived between 100 (full awake) to 0 (isoelectric) using fuzzy inference engine. To validate the proposed method, a clinical study has conducted on 22 patients to construct 4 subsets of reference states and also to compare the results with CSM monitor (Danmeter, Denmark), which has revealed satisfactory correlation with clinical assessments\",\"PeriodicalId\":423707,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Data Mining\",\"volume\":\"28 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2007.368942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2007.368942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a Fuzzy Rule Based System to Estimate Depth of Anesthesia
Estimating the depth of anesthesia (DOA) is still a challenging area in anesthesia research. The objective of this study was to design a fuzzy rule based system which integrates electroencephalogram (EEG) features to quantitatively estimate the DOA. The proposed method is based on the analysis of single-channel EEG using frequency and time domain features as well as Shannon entropy measure. The fuzzy classifier is trained with features obtained from four subsets of data comprising well-defined anesthesia states: awake, moderate, general anesthesia, and isoelectric. The classifier extracts efficient fuzzy if-then rules and the DOA index is derived between 100 (full awake) to 0 (isoelectric) using fuzzy inference engine. To validate the proposed method, a clinical study has conducted on 22 patients to construct 4 subsets of reference states and also to compare the results with CSM monitor (Danmeter, Denmark), which has revealed satisfactory correlation with clinical assessments