一类MIMO不确定欠驱动系统的自适应层次控制

A. Kulkarni, A. Kumar
{"title":"一类MIMO不确定欠驱动系统的自适应层次控制","authors":"A. Kulkarni, A. Kumar","doi":"10.1109/ICCIC.2014.7238353","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive control strategy which combines the hierarchical control scheme with adaptive wavelet neural network for a class of multi-input multi-output (MIMO) underactuated systems with uncertain dynamics. Proposed scheme develops a systematic framework of the control components by applying hierarchical scheme to underactuated system. Wavelet neural networks are used to mimic the system uncertainties. Adaptive parameters of the wavelet network are tuned on line using gradient based approach. Uniformly ultimately bounded (UUB) stability of the closed loop system is analyzed in the sense of Lyapunov theory. Simulation results demonstrate the performance of proposed control scheme.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive hierarchical control for a class of MIMO uncertain underactuated systems\",\"authors\":\"A. Kulkarni, A. Kumar\",\"doi\":\"10.1109/ICCIC.2014.7238353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive control strategy which combines the hierarchical control scheme with adaptive wavelet neural network for a class of multi-input multi-output (MIMO) underactuated systems with uncertain dynamics. Proposed scheme develops a systematic framework of the control components by applying hierarchical scheme to underactuated system. Wavelet neural networks are used to mimic the system uncertainties. Adaptive parameters of the wavelet network are tuned on line using gradient based approach. Uniformly ultimately bounded (UUB) stability of the closed loop system is analyzed in the sense of Lyapunov theory. Simulation results demonstrate the performance of proposed control scheme.\",\"PeriodicalId\":187874,\"journal\":{\"name\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIC.2014.7238353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对一类动态不确定的多输入多输出欠驱动系统,提出了一种将层次控制与自适应小波神经网络相结合的自适应控制策略。该方案将层次结构应用于欠驱动系统,建立了控制元件的系统框架。采用小波神经网络模拟系统的不确定性。采用基于梯度的方法在线调整小波网络的自适应参数。从李雅普诺夫理论的意义上分析了闭环系统的一致最终有界稳定性。仿真结果验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive hierarchical control for a class of MIMO uncertain underactuated systems
This paper presents an adaptive control strategy which combines the hierarchical control scheme with adaptive wavelet neural network for a class of multi-input multi-output (MIMO) underactuated systems with uncertain dynamics. Proposed scheme develops a systematic framework of the control components by applying hierarchical scheme to underactuated system. Wavelet neural networks are used to mimic the system uncertainties. Adaptive parameters of the wavelet network are tuned on line using gradient based approach. Uniformly ultimately bounded (UUB) stability of the closed loop system is analyzed in the sense of Lyapunov theory. Simulation results demonstrate the performance of proposed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信