图像序列中的实时目标分割

Eui-Seon Kang, Seung-Hun Yoo
{"title":"图像序列中的实时目标分割","authors":"Eui-Seon Kang, Seung-Hun Yoo","doi":"10.3745/KIPSTB.2011.18B.4.173","DOIUrl":null,"url":null,"abstract":"This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Object Segmentation in Image Sequences\",\"authors\":\"Eui-Seon Kang, Seung-Hun Yoo\",\"doi\":\"10.3745/KIPSTB.2011.18B.4.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2011.18B.4.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2011.18B.4.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一种基于CUDA(计算统一设备架构)的GPU(图形处理单元)实时对象分割方法。近年来,监控系统、运动分析、目标跟踪等应用都需要实时处理。在CPU上进行实时的对象分割是不合适的。NVIDIA为通用计算提供CUDA并行处理平台,提升硬件图形的极限。本文在目标提取步骤中使用自适应高斯混合背景建模,在分类步骤中使用连接分量标记(CCL)。通过在2.4GHz Core2 Quad处理器上的实现,对GPU和CPU的速度进行了比较和评估。GPU版本的速度比CPU版本提高了3 -4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Object Segmentation in Image Sequences
This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信