多维非均匀FFT的最小-最大方法:在层析图像重建中的应用

B. Sutton, J. Fessler
{"title":"多维非均匀FFT的最小-最大方法:在层析图像重建中的应用","authors":"B. Sutton, J. Fessler","doi":"10.1109/ICIP.2001.959143","DOIUrl":null,"url":null,"abstract":"The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) over a set of uniformly spaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e., a nonuniform FT. Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents a method for the nonuniform FT that is optimal in a min-max sense. The proposed method minimizes the worst-case approximation error over all signals of unit norm. Unlike many previous methods for the nonuniform FT, the proposed method easily generalizes to multidimensional signals. We are investigating this method as a fast algorithm for computing the Radon transform in 2D iterative tomographic image reconstruction.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A min-max approach to the multidimensional nonuniform FFT: application to tomographic image reconstruction\",\"authors\":\"B. Sutton, J. Fessler\",\"doi\":\"10.1109/ICIP.2001.959143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) over a set of uniformly spaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e., a nonuniform FT. Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents a method for the nonuniform FT that is optimal in a min-max sense. The proposed method minimizes the worst-case approximation error over all signals of unit norm. Unlike many previous methods for the nonuniform FT, the proposed method easily generalizes to multidimensional signals. We are investigating this method as a fast algorithm for computing the Radon transform in 2D iterative tomographic image reconstruction.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"22 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.959143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.959143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

快速傅里叶变换(FFT)在一组均匀间隔频率位置上的有效计算被广泛应用于信号处理中。然而,在许多应用中,人们需要在频域中进行非均匀采样,即非均匀傅立叶变换。一些论文描述了基于插值过采样傅立叶变换的非均匀傅立叶变换的快速逼近。本文提出了一种求解非均匀傅里叶变换在最小-最大意义上最优的方法。该方法使所有单位范数信号的最坏情况逼近误差最小化。与以往许多非均匀傅立叶变换方法不同,该方法易于推广到多维信号。我们正在研究这种方法作为计算二维迭代层析图像重建中的Radon变换的快速算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A min-max approach to the multidimensional nonuniform FFT: application to tomographic image reconstruction
The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) over a set of uniformly spaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e., a nonuniform FT. Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents a method for the nonuniform FT that is optimal in a min-max sense. The proposed method minimizes the worst-case approximation error over all signals of unit norm. Unlike many previous methods for the nonuniform FT, the proposed method easily generalizes to multidimensional signals. We are investigating this method as a fast algorithm for computing the Radon transform in 2D iterative tomographic image reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信