进化计算能帮助人工神经网络设计预测汇率吗?

Shu-Heng Chen, Chun-Fen Lu
{"title":"进化计算能帮助人工神经网络设计预测汇率吗?","authors":"Shu-Heng Chen, Chun-Fen Lu","doi":"10.1109/CEC.1999.781935","DOIUrl":null,"url":null,"abstract":"This paper evaluates the relevance of evolutionary artificial neural nets to forecasting the tick-by-tick DEM/USD exchange rate. With an analysis based on modern econometric techniques, this time series is shown to be a complex nonlinear series, and is qualified to be a challenge for ANNs and EANNs. Based on the five criteria, including the Sharpe ratio and a risk-adjusted profit rate, we compare the performance of 8 ANNs, 8 EANNs and the random-walk model. By the Granger-Newbold test, it is found that all neural network models can statistically beat the RW model in all criteria at the 1% significance level. In addition, among the 16 NN models generated in different designs, the best model is the EANN with the largest search space.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Would evolutionary computation help in designs of ANNs in forecasting foreign exchange rates?\",\"authors\":\"Shu-Heng Chen, Chun-Fen Lu\",\"doi\":\"10.1109/CEC.1999.781935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates the relevance of evolutionary artificial neural nets to forecasting the tick-by-tick DEM/USD exchange rate. With an analysis based on modern econometric techniques, this time series is shown to be a complex nonlinear series, and is qualified to be a challenge for ANNs and EANNs. Based on the five criteria, including the Sharpe ratio and a risk-adjusted profit rate, we compare the performance of 8 ANNs, 8 EANNs and the random-walk model. By the Granger-Newbold test, it is found that all neural network models can statistically beat the RW model in all criteria at the 1% significance level. In addition, among the 16 NN models generated in different designs, the best model is the EANN with the largest search space.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.781935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文评估了进化人工神经网络对预测人民币兑美元汇率的相关性。基于现代计量经济学技术的分析表明,该时间序列是一个复杂的非线性序列,有资格成为人工神经网络和eann的挑战。基于夏普比率和风险调整后的利润率这五个标准,我们比较了8种人工神经网络、8种eann和随机漫步模型的性能。通过Granger-Newbold检验发现,在1%显著性水平下,所有神经网络模型在所有标准上都能在统计上优于RW模型。此外,在不同设计生成的16个NN模型中,最佳模型是搜索空间最大的EANN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Would evolutionary computation help in designs of ANNs in forecasting foreign exchange rates?
This paper evaluates the relevance of evolutionary artificial neural nets to forecasting the tick-by-tick DEM/USD exchange rate. With an analysis based on modern econometric techniques, this time series is shown to be a complex nonlinear series, and is qualified to be a challenge for ANNs and EANNs. Based on the five criteria, including the Sharpe ratio and a risk-adjusted profit rate, we compare the performance of 8 ANNs, 8 EANNs and the random-walk model. By the Granger-Newbold test, it is found that all neural network models can statistically beat the RW model in all criteria at the 1% significance level. In addition, among the 16 NN models generated in different designs, the best model is the EANN with the largest search space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信