{"title":"类型为$\\boldsymbol{A^{(1)}_{n-1}}$的量子仿射代数反射方程的集理论解","authors":"A. Kuniba, M. Okado","doi":"10.1093/integr/xyz013","DOIUrl":null,"url":null,"abstract":"\n A trick to obtain a solution to the set-theoretical reflection equation from a known one to the Yang–Baxter equation is applied to crystals and geometric crystals associated to the quantum affine algebra of type $A^{(1)}_{n-1}$.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Set-theoretical solutions to the reflection equation associated to the quantum affine algebra of type $\\\\boldsymbol{A^{(1)}_{n-1}}$\",\"authors\":\"A. Kuniba, M. Okado\",\"doi\":\"10.1093/integr/xyz013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A trick to obtain a solution to the set-theoretical reflection equation from a known one to the Yang–Baxter equation is applied to crystals and geometric crystals associated to the quantum affine algebra of type $A^{(1)}_{n-1}$.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyz013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyz013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Set-theoretical solutions to the reflection equation associated to the quantum affine algebra of type $\boldsymbol{A^{(1)}_{n-1}}$
A trick to obtain a solution to the set-theoretical reflection equation from a known one to the Yang–Baxter equation is applied to crystals and geometric crystals associated to the quantum affine algebra of type $A^{(1)}_{n-1}$.