深度神经网络中多种视觉注意机制的集成

Fernando Martinez, Yijun Zhao
{"title":"深度神经网络中多种视觉注意机制的集成","authors":"Fernando Martinez, Yijun Zhao","doi":"10.1109/COMPSAC57700.2023.00180","DOIUrl":null,"url":null,"abstract":"Inspired by the success of various visual attention techniques in computer vision, we introduce a novel method for integrating multiple attention mechanisms to boost model performance. Our approach involves augmenting a base model with a Parallel Visual Attention Encoder (PVAE) branch, which concurrently employs two different attention modules (modified large kernel attention and modified convolutional block attention) to capture essential visual features. To reduce the training cost incurred by these additional components, we apply an encoder for efficient feature extraction and dimensionality reduction before applying the attention modules. The proposed PVAE architecture can be combined with cutting-edge models (e.g., EfficientNet, ResNet, DenseNet, etc.) to create a Parallel Visual Attention Network (PVAN). We evaluate the efficacy of our approach by devising a PVAN with EfficientNet as the base model for the task of classifying dog breeds. Our experimental results demonstrate the effectiveness of the proposed hybrid visual attention architecture, which achieves superior performance compared to the base model and models with a single attention mechanism. We further present an interactive web application developed for the general public to identify dog breeds using their photographs to test our model’s performance in real-life scenarios.","PeriodicalId":296288,"journal":{"name":"2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Multiple Visual Attention Mechanisms in Deep Neural Networks\",\"authors\":\"Fernando Martinez, Yijun Zhao\",\"doi\":\"10.1109/COMPSAC57700.2023.00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the success of various visual attention techniques in computer vision, we introduce a novel method for integrating multiple attention mechanisms to boost model performance. Our approach involves augmenting a base model with a Parallel Visual Attention Encoder (PVAE) branch, which concurrently employs two different attention modules (modified large kernel attention and modified convolutional block attention) to capture essential visual features. To reduce the training cost incurred by these additional components, we apply an encoder for efficient feature extraction and dimensionality reduction before applying the attention modules. The proposed PVAE architecture can be combined with cutting-edge models (e.g., EfficientNet, ResNet, DenseNet, etc.) to create a Parallel Visual Attention Network (PVAN). We evaluate the efficacy of our approach by devising a PVAN with EfficientNet as the base model for the task of classifying dog breeds. Our experimental results demonstrate the effectiveness of the proposed hybrid visual attention architecture, which achieves superior performance compared to the base model and models with a single attention mechanism. We further present an interactive web application developed for the general public to identify dog breeds using their photographs to test our model’s performance in real-life scenarios.\",\"PeriodicalId\":296288,\"journal\":{\"name\":\"2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC57700.2023.00180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC57700.2023.00180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受计算机视觉中各种视觉注意技术成功的启发,我们引入了一种集成多种注意机制以提高模型性能的新方法。我们的方法包括使用并行视觉注意编码器(PVAE)分支来增强基本模型,该分支同时使用两种不同的注意模块(改进的大核注意和改进的卷积块注意)来捕获基本的视觉特征。为了减少这些额外组件带来的训练成本,我们在应用注意力模块之前使用编码器进行有效的特征提取和降维。所提出的PVAE架构可以与前沿模型(例如,EfficientNet, ResNet, DenseNet等)相结合,以创建并行视觉注意网络(PVAN)。我们通过设计一个以EfficientNet为基础模型的PVAN来评估我们方法的有效性。实验结果证明了所提出的混合视觉注意架构的有效性,与基本模型和单一注意机制的模型相比,该模型取得了更好的性能。我们进一步为公众开发了一个交互式web应用程序,通过狗的照片来识别狗的品种,以测试我们的模型在现实生活场景中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Multiple Visual Attention Mechanisms in Deep Neural Networks
Inspired by the success of various visual attention techniques in computer vision, we introduce a novel method for integrating multiple attention mechanisms to boost model performance. Our approach involves augmenting a base model with a Parallel Visual Attention Encoder (PVAE) branch, which concurrently employs two different attention modules (modified large kernel attention and modified convolutional block attention) to capture essential visual features. To reduce the training cost incurred by these additional components, we apply an encoder for efficient feature extraction and dimensionality reduction before applying the attention modules. The proposed PVAE architecture can be combined with cutting-edge models (e.g., EfficientNet, ResNet, DenseNet, etc.) to create a Parallel Visual Attention Network (PVAN). We evaluate the efficacy of our approach by devising a PVAN with EfficientNet as the base model for the task of classifying dog breeds. Our experimental results demonstrate the effectiveness of the proposed hybrid visual attention architecture, which achieves superior performance compared to the base model and models with a single attention mechanism. We further present an interactive web application developed for the general public to identify dog breeds using their photographs to test our model’s performance in real-life scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信