{"title":"基于浮力-俯仰的混合式水下滑翔机深度控制算法分析与开发","authors":"B. Claus, R. Bachmayer, L. Cooney","doi":"10.1109/AUV.2012.6380742","DOIUrl":null,"url":null,"abstract":"The hybrid glider augments a Slocum electric glider with a propeller based propulsion device enabling new modes of operation. One of the new modes available is constant depth flight. The glider has two mechanisms which lend themselves to a control scheme for depth control, a ballast system and an internal mass shifting mechanism for pitch control. This paper examines the use of a ballast depth controller and a pitch based depth controller. The detailed implementation of both controllers is described and experimental results are presented.","PeriodicalId":340133,"journal":{"name":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider\",\"authors\":\"B. Claus, R. Bachmayer, L. Cooney\",\"doi\":\"10.1109/AUV.2012.6380742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hybrid glider augments a Slocum electric glider with a propeller based propulsion device enabling new modes of operation. One of the new modes available is constant depth flight. The glider has two mechanisms which lend themselves to a control scheme for depth control, a ballast system and an internal mass shifting mechanism for pitch control. This paper examines the use of a ballast depth controller and a pitch based depth controller. The detailed implementation of both controllers is described and experimental results are presented.\",\"PeriodicalId\":340133,\"journal\":{\"name\":\"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV.2012.6380742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2012.6380742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and development of a buoyancy-pitch based depth control algorithm for a hybrid underwater glider
The hybrid glider augments a Slocum electric glider with a propeller based propulsion device enabling new modes of operation. One of the new modes available is constant depth flight. The glider has two mechanisms which lend themselves to a control scheme for depth control, a ballast system and an internal mass shifting mechanism for pitch control. This paper examines the use of a ballast depth controller and a pitch based depth controller. The detailed implementation of both controllers is described and experimental results are presented.