基于卷积神经网络的TDMR涡轮检测媒体噪声预测与均衡

Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James
{"title":"基于卷积神经网络的TDMR涡轮检测媒体噪声预测与均衡","authors":"Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James","doi":"10.1109/TMRC56419.2022.9918551","DOIUrl":null,"url":null,"abstract":"This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional Neural Network-based Media Noise Prediction and Equalization for TDMR Turbo-detection with Write/Read TMR\",\"authors\":\"Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James\",\"doi\":\"10.1109/TMRC56419.2022.9918551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.\",\"PeriodicalId\":432413,\"journal\":{\"name\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMRC56419.2022.9918551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种涡轮检测系统,该系统由基于卷积神经网络(CNN)的均衡器、Bahl-Cocke-Jelinek-Raviv (BCJR)栅格检测器、基于CNN的媒体噪声预测器(MNP)和用于二维磁记录(TDMR)的低密度奇偶校验(LDPC)信道解码器组成。BCJR检测器、CNN MNP和LDPC解码器迭代交换软信息,在误码率约束下最大化面密度(AD)。仿真结果表明,该系统对跟踪配准错误具有较强的鲁棒性。与带有软轨间干扰(ITI)减法的I-D模式相关噪声预测(PDNP)基线相比,该系统在单独读取tmr时获得0.34%的AD增益,在同时写入和读取tmr时获得0.69%的AD增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Neural Network-based Media Noise Prediction and Equalization for TDMR Turbo-detection with Write/Read TMR
This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信