Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James
{"title":"基于卷积神经网络的TDMR涡轮检测媒体噪声预测与均衡","authors":"Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James","doi":"10.1109/TMRC56419.2022.9918551","DOIUrl":null,"url":null,"abstract":"This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional Neural Network-based Media Noise Prediction and Equalization for TDMR Turbo-detection with Write/Read TMR\",\"authors\":\"Amirhossein Sayyafan, Ahmed Aboutaleb, B. Belzer, K. Sivakumar, S. Greaves, K. Chan, Ashish James\",\"doi\":\"10.1109/TMRC56419.2022.9918551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.\",\"PeriodicalId\":432413,\"journal\":{\"name\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 33rd Magnetic Recording Conference (TMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMRC56419.2022.9918551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional Neural Network-based Media Noise Prediction and Equalization for TDMR Turbo-detection with Write/Read TMR
This paper presents a turbo-detection system consisting of a convolutional neural network (CNN) based equalizer, a Bahl-Cocke-Jelinek-Raviv (BCJR) trellis detector, a CNN-based media noise predictor (MNP), and a low-density parity-check (LDPC) channel decoder for two-dimensional magnetic recording (TDMR). The BCJR detector, CNN MNP, and LDPC decoder iteratively exchange soft information to maximize the areal density (AD) subject to a bit error rate (BER) constraint. Simulation results employing a realistic grain switching probabilistic (GSP) media model show that the proposed system is quite robust to track-misregistration (TMR). Compared to a I-D pattern-dependent noise prediction (PDNP) baseline with soft intertrack interference (ITI) subtraction, the system achieves 0.34% AD gain with read-TMR alone and 0.69% with write- and read-TMR together.