{"title":"用物理代理实现虚拟电路的原型设计","authors":"Te-Yen Wu, Jun Gong, T. Seyed, Xing-Dong Yang","doi":"10.1145/3332165.3347938","DOIUrl":null,"url":null,"abstract":"We propose blending the virtual and physical worlds for prototyping circuits using physical proxies. With physical proxies, real-world components (e.g. a motor, or light sensor) can be used with a virtual counterpart for a circuit designed in software. We demonstrate this concept in Proxino, and elucidate the new scenarios it enables for makers, such as remote collaboration with physically distributed electronics components. We compared our hybrid system and its output with designs of real circuits to determine the difference through a system evaluation and observed minimal differences. We then present the results of an informal study with 9 users, where we gathered feedback on the effectiveness of our system in different working conditions (with a desktop, using a mobile, and with a remote collaborator). We conclude by sharing our lessons learned from our system and discuss directions for future research that blend physical and virtual prototyping for electronic circuits.","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"26 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Proxino: Enabling Prototyping of Virtual Circuits with Physical Proxies\",\"authors\":\"Te-Yen Wu, Jun Gong, T. Seyed, Xing-Dong Yang\",\"doi\":\"10.1145/3332165.3347938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose blending the virtual and physical worlds for prototyping circuits using physical proxies. With physical proxies, real-world components (e.g. a motor, or light sensor) can be used with a virtual counterpart for a circuit designed in software. We demonstrate this concept in Proxino, and elucidate the new scenarios it enables for makers, such as remote collaboration with physically distributed electronics components. We compared our hybrid system and its output with designs of real circuits to determine the difference through a system evaluation and observed minimal differences. We then present the results of an informal study with 9 users, where we gathered feedback on the effectiveness of our system in different working conditions (with a desktop, using a mobile, and with a remote collaborator). We conclude by sharing our lessons learned from our system and discuss directions for future research that blend physical and virtual prototyping for electronic circuits.\",\"PeriodicalId\":431403,\"journal\":{\"name\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"26 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3332165.3347938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proxino: Enabling Prototyping of Virtual Circuits with Physical Proxies
We propose blending the virtual and physical worlds for prototyping circuits using physical proxies. With physical proxies, real-world components (e.g. a motor, or light sensor) can be used with a virtual counterpart for a circuit designed in software. We demonstrate this concept in Proxino, and elucidate the new scenarios it enables for makers, such as remote collaboration with physically distributed electronics components. We compared our hybrid system and its output with designs of real circuits to determine the difference through a system evaluation and observed minimal differences. We then present the results of an informal study with 9 users, where we gathered feedback on the effectiveness of our system in different working conditions (with a desktop, using a mobile, and with a remote collaborator). We conclude by sharing our lessons learned from our system and discuss directions for future research that blend physical and virtual prototyping for electronic circuits.