基于忆阻器的改良蔡氏电路的延拓分析

V. Ostrovskii, A. Tutueva, V. Rybin, A. Karimov, D. Butusov
{"title":"基于忆阻器的改良蔡氏电路的延拓分析","authors":"V. Ostrovskii, A. Tutueva, V. Rybin, A. Karimov, D. Butusov","doi":"10.1109/NIR50484.2020.9290157","DOIUrl":null,"url":null,"abstract":"Multistability in chaotic systems is a recently emerged topic in nonlinear dynamics. One of powerful tools for studying it is continuation bifurcation diagrams. In this paper we investigate multistability in the memristor-based modified Chua's circuit. In addition to one-parameter continuation bifurcation diagrams and two-parametric continuation diagrams with row- and column-wise parameter change, we introduce a new type of two-parametric continuation diagrams with simultaneous parameter change. This allows identifying parameter regions of coexisting attractors. As the result, we found that the coexisting attractors in the modified Chua's circuit exist in a wider parameter range that it was previously found by using standard tools.","PeriodicalId":274976,"journal":{"name":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Continuation Analysis of Memristor-Based Modified Chua's Circuit\",\"authors\":\"V. Ostrovskii, A. Tutueva, V. Rybin, A. Karimov, D. Butusov\",\"doi\":\"10.1109/NIR50484.2020.9290157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multistability in chaotic systems is a recently emerged topic in nonlinear dynamics. One of powerful tools for studying it is continuation bifurcation diagrams. In this paper we investigate multistability in the memristor-based modified Chua's circuit. In addition to one-parameter continuation bifurcation diagrams and two-parametric continuation diagrams with row- and column-wise parameter change, we introduce a new type of two-parametric continuation diagrams with simultaneous parameter change. This allows identifying parameter regions of coexisting attractors. As the result, we found that the coexisting attractors in the modified Chua's circuit exist in a wider parameter range that it was previously found by using standard tools.\",\"PeriodicalId\":274976,\"journal\":{\"name\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NIR50484.2020.9290157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR50484.2020.9290157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

混沌系统的多稳定性是非线性动力学中一个新兴的研究课题。延拓分岔图是研究它的有力工具之一。本文研究了基于忆阻器的改良蔡氏电路的多稳性。除了单参数延拓分岔图和参数行、列变化的双参数延拓图外,我们还引入了一类参数同时变化的双参数延拓图。这允许识别共存吸引子的参数区域。结果发现,改进后的蔡氏电路中共存吸引子存在的参数范围比以前用标准工具发现的更宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuation Analysis of Memristor-Based Modified Chua's Circuit
Multistability in chaotic systems is a recently emerged topic in nonlinear dynamics. One of powerful tools for studying it is continuation bifurcation diagrams. In this paper we investigate multistability in the memristor-based modified Chua's circuit. In addition to one-parameter continuation bifurcation diagrams and two-parametric continuation diagrams with row- and column-wise parameter change, we introduce a new type of two-parametric continuation diagrams with simultaneous parameter change. This allows identifying parameter regions of coexisting attractors. As the result, we found that the coexisting attractors in the modified Chua's circuit exist in a wider parameter range that it was previously found by using standard tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信