{"title":"拟合贝加尔湖裂谷带地震事件位置的速度模型","authors":"A. Belyashov, Ts. A. Tubanov","doi":"10.18303/2619-1563-2021-1-38","DOIUrl":null,"url":null,"abstract":"Whereas the defined velocity model plays a key role in the process of seismic events localization, so selection of the model as much as possible corresponding to the real velocity conditions of the investigated area becomes a crucial task. Basing on the analyses of published results of the Lake Baikal area seismic study a layered P-waves models for two situations defined: For the high velocity consolidated rock on the lake banks and low velocity sediments up to 10 km thick under the lake bottom.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Velocity models fitting for the seismic events location within the Baikal rift zone\",\"authors\":\"A. Belyashov, Ts. A. Tubanov\",\"doi\":\"10.18303/2619-1563-2021-1-38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas the defined velocity model plays a key role in the process of seismic events localization, so selection of the model as much as possible corresponding to the real velocity conditions of the investigated area becomes a crucial task. Basing on the analyses of published results of the Lake Baikal area seismic study a layered P-waves models for two situations defined: For the high velocity consolidated rock on the lake banks and low velocity sediments up to 10 km thick under the lake bottom.\",\"PeriodicalId\":190530,\"journal\":{\"name\":\"Russian Journal of Geophysical Technologies\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Geophysical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18303/2619-1563-2021-1-38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2021-1-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity models fitting for the seismic events location within the Baikal rift zone
Whereas the defined velocity model plays a key role in the process of seismic events localization, so selection of the model as much as possible corresponding to the real velocity conditions of the investigated area becomes a crucial task. Basing on the analyses of published results of the Lake Baikal area seismic study a layered P-waves models for two situations defined: For the high velocity consolidated rock on the lake banks and low velocity sediments up to 10 km thick under the lake bottom.