基于深度学习的区块链金融产品收益率预测模型的狮子群优化

P. Sudha, J. Jegathesh Amalraj, M. Sivakumar
{"title":"基于深度学习的区块链金融产品收益率预测模型的狮子群优化","authors":"P. Sudha, J. Jegathesh Amalraj, M. Sivakumar","doi":"10.1109/ICEARS56392.2023.10085579","DOIUrl":null,"url":null,"abstract":"Recently, financial globalization is an extremely improved in distinct manners for enhancing service quality with advanced resources. An effectual application of bitcoin Blockchain (BC) approaches allows the shareholders to be concern regarding the risk and return of financial product. The shareholders mainly concentrate on the predictive of risk and return rates of financial product. Thus, an automated return rate bitcoin predictive method develops vital for BC financial product (FP). A newly planned machine learning (ML) and deep learning (DL) techniques offers a way for the return rate predictor systems. This work designs a Lion Swarm Optimization with Deep Learning Driven Predictive Model on Blockchain Financial Product Return Rates (LSODL-BFPRR) technique. The projected LSODL-BFPRR technique lies in the effectual forecasting of return rates in the BC financial sector. In the presented LSODL-BFPRR technique, stacked bidirectional gated recurrent unit (SBiGRU) approach was exploited for return rate classification. To modify the hyperparameters based on the SBiGRU approach, the LSO algorithm is used. The LSODL- BFPRR technique exploits Ethereum (ETH) return rate as the target. The experimental outcomes of the LSODL-BFPRR technique are tested using a series of simulations and the results demonstrate the effectual predicting results of the LSODL-BFPRR technique over other ones.","PeriodicalId":338611,"journal":{"name":"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)","volume":"26 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lion Swarm Optimization with Deep Learning Driven Predictive Model on Blockchain Financial Product Return Rates\",\"authors\":\"P. Sudha, J. Jegathesh Amalraj, M. Sivakumar\",\"doi\":\"10.1109/ICEARS56392.2023.10085579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, financial globalization is an extremely improved in distinct manners for enhancing service quality with advanced resources. An effectual application of bitcoin Blockchain (BC) approaches allows the shareholders to be concern regarding the risk and return of financial product. The shareholders mainly concentrate on the predictive of risk and return rates of financial product. Thus, an automated return rate bitcoin predictive method develops vital for BC financial product (FP). A newly planned machine learning (ML) and deep learning (DL) techniques offers a way for the return rate predictor systems. This work designs a Lion Swarm Optimization with Deep Learning Driven Predictive Model on Blockchain Financial Product Return Rates (LSODL-BFPRR) technique. The projected LSODL-BFPRR technique lies in the effectual forecasting of return rates in the BC financial sector. In the presented LSODL-BFPRR technique, stacked bidirectional gated recurrent unit (SBiGRU) approach was exploited for return rate classification. To modify the hyperparameters based on the SBiGRU approach, the LSO algorithm is used. The LSODL- BFPRR technique exploits Ethereum (ETH) return rate as the target. The experimental outcomes of the LSODL-BFPRR technique are tested using a series of simulations and the results demonstrate the effectual predicting results of the LSODL-BFPRR technique over other ones.\",\"PeriodicalId\":338611,\"journal\":{\"name\":\"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)\",\"volume\":\"26 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEARS56392.2023.10085579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS56392.2023.10085579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,金融全球化是利用先进资源提升服务质量的一种极具特色的方式。比特币区块链(BC)方法的有效应用使股东能够关注金融产品的风险和回报。股东主要关注的是对金融产品风险和收益率的预测。因此,比特币自动回报率预测方法对BC金融产品(FP)至关重要。新计划的机器学习(ML)和深度学习(DL)技术为回报率预测系统提供了一种方法。本文设计了一种基于深度学习驱动的区块链金融产品收益率预测模型(LSODL-BFPRR)的狮子群优化算法。预测的LSODL-BFPRR技术在于对BC省金融部门的回报率进行有效预测。在提出的LSODL-BFPRR技术中,利用堆叠双向门控循环单元(堆叠双向门控循环单元,SBiGRU)方法进行回报率分类。为了在SBiGRU方法的基础上修改超参数,采用了LSO算法。LSODL- BFPRR技术利用以太坊(ETH)的回报率作为目标。通过一系列的模拟实验验证了LSODL-BFPRR技术的实验结果,结果表明LSODL-BFPRR技术的预测效果优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lion Swarm Optimization with Deep Learning Driven Predictive Model on Blockchain Financial Product Return Rates
Recently, financial globalization is an extremely improved in distinct manners for enhancing service quality with advanced resources. An effectual application of bitcoin Blockchain (BC) approaches allows the shareholders to be concern regarding the risk and return of financial product. The shareholders mainly concentrate on the predictive of risk and return rates of financial product. Thus, an automated return rate bitcoin predictive method develops vital for BC financial product (FP). A newly planned machine learning (ML) and deep learning (DL) techniques offers a way for the return rate predictor systems. This work designs a Lion Swarm Optimization with Deep Learning Driven Predictive Model on Blockchain Financial Product Return Rates (LSODL-BFPRR) technique. The projected LSODL-BFPRR technique lies in the effectual forecasting of return rates in the BC financial sector. In the presented LSODL-BFPRR technique, stacked bidirectional gated recurrent unit (SBiGRU) approach was exploited for return rate classification. To modify the hyperparameters based on the SBiGRU approach, the LSO algorithm is used. The LSODL- BFPRR technique exploits Ethereum (ETH) return rate as the target. The experimental outcomes of the LSODL-BFPRR technique are tested using a series of simulations and the results demonstrate the effectual predicting results of the LSODL-BFPRR technique over other ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信