{"title":"单幅图像超分辨率重建的双路径深度网络","authors":"Fateme S. Mirshahi, Parvaneh Saeedi","doi":"10.1109/MMSP.2018.8547049","DOIUrl":null,"url":null,"abstract":"Super-resolution reconstruction based on deep learning has come a long way since the first proposed method in 2015. Numerous methods have been developed for this task using deep learning approaches. Among these methods, residual deep learning algorithms have shown better performance. Although all early proposed deep learning based super-resolution frameworks used bicubic upsampled versions of low resolution images as the main input, most of the current ones use the low resolution images directly by adding up-sampling layers to their networks. In this work, we propose a new method by using both low resolution and bicubic upsampled images as the inputs to our network. The final results confirm that decreasing the depth of the network in lower resolution space and adding the bicubic path lead to almost similar results to those of the deeper networks in terms of PSNR and SSIM, yet making the network computationally inexpensive and more efficient.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual Path Deep Network for Single Image Super-Resolution Reconstruction\",\"authors\":\"Fateme S. Mirshahi, Parvaneh Saeedi\",\"doi\":\"10.1109/MMSP.2018.8547049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super-resolution reconstruction based on deep learning has come a long way since the first proposed method in 2015. Numerous methods have been developed for this task using deep learning approaches. Among these methods, residual deep learning algorithms have shown better performance. Although all early proposed deep learning based super-resolution frameworks used bicubic upsampled versions of low resolution images as the main input, most of the current ones use the low resolution images directly by adding up-sampling layers to their networks. In this work, we propose a new method by using both low resolution and bicubic upsampled images as the inputs to our network. The final results confirm that decreasing the depth of the network in lower resolution space and adding the bicubic path lead to almost similar results to those of the deeper networks in terms of PSNR and SSIM, yet making the network computationally inexpensive and more efficient.\",\"PeriodicalId\":137522,\"journal\":{\"name\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2018.8547049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dual Path Deep Network for Single Image Super-Resolution Reconstruction
Super-resolution reconstruction based on deep learning has come a long way since the first proposed method in 2015. Numerous methods have been developed for this task using deep learning approaches. Among these methods, residual deep learning algorithms have shown better performance. Although all early proposed deep learning based super-resolution frameworks used bicubic upsampled versions of low resolution images as the main input, most of the current ones use the low resolution images directly by adding up-sampling layers to their networks. In this work, we propose a new method by using both low resolution and bicubic upsampled images as the inputs to our network. The final results confirm that decreasing the depth of the network in lower resolution space and adding the bicubic path lead to almost similar results to those of the deeper networks in terms of PSNR and SSIM, yet making the network computationally inexpensive and more efficient.