基于k均值聚类和马尔可夫模型的建筑维修传感器数据离群度估计

K. Aoki
{"title":"基于k均值聚类和马尔可夫模型的建筑维修传感器数据离群度估计","authors":"K. Aoki","doi":"10.4156/AISS.VOL5.ISSUE7.108","DOIUrl":null,"url":null,"abstract":"There are many sensors in a building. Those sensors gather huge amount of various data in every hour. The data must show some failures in the building. However, the amount of data prevents from utilizing the sign. The variety of the sensors makes difficult to uniform processing over all data. This paper discusses the uniform processing method over various sensor data in buildings using K-means clustering and Markov model.","PeriodicalId":247895,"journal":{"name":"The 3rd International Conference on Data Mining and Intelligent Information Technology Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outlier degree estimation in various sensor data for building maintenance using K-means clustering and Markov model\",\"authors\":\"K. Aoki\",\"doi\":\"10.4156/AISS.VOL5.ISSUE7.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many sensors in a building. Those sensors gather huge amount of various data in every hour. The data must show some failures in the building. However, the amount of data prevents from utilizing the sign. The variety of the sensors makes difficult to uniform processing over all data. This paper discusses the uniform processing method over various sensor data in buildings using K-means clustering and Markov model.\",\"PeriodicalId\":247895,\"journal\":{\"name\":\"The 3rd International Conference on Data Mining and Intelligent Information Technology Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International Conference on Data Mining and Intelligent Information Technology Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/AISS.VOL5.ISSUE7.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International Conference on Data Mining and Intelligent Information Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/AISS.VOL5.ISSUE7.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一栋楼里有很多传感器。这些传感器每小时都会收集大量的各种数据。数据肯定显示了大楼的一些故障。但是,由于数据量大,无法使用该符号。传感器种类繁多,难以对所有数据进行统一处理。本文讨论了利用k均值聚类和马尔可夫模型对建筑物中各种传感器数据进行统一处理的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outlier degree estimation in various sensor data for building maintenance using K-means clustering and Markov model
There are many sensors in a building. Those sensors gather huge amount of various data in every hour. The data must show some failures in the building. However, the amount of data prevents from utilizing the sign. The variety of the sensors makes difficult to uniform processing over all data. This paper discusses the uniform processing method over various sensor data in buildings using K-means clustering and Markov model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信