概率K-NN查询的选择性数据采集

Yu-Chieh Lin, De-Nian Yang, Ming-Syan Chen
{"title":"概率K-NN查询的选择性数据采集","authors":"Yu-Chieh Lin, De-Nian Yang, Ming-Syan Chen","doi":"10.1145/1871437.1871620","DOIUrl":null,"url":null,"abstract":"Recently, management of uncertain data draws lots of attention to consider the granularity of devices and noises in collection and delivery of data. Previous works directly model and handle uncertain data to find the required results. However, when data uncertainty is not small or limited, users are not able to obtain useful insights and thereby tend to provide more resources to improve the solution, by reducing the uncertainty of data. In light of this issue, this paper formulates a new problem of choosing a given number of uncertain data objects for acquiring their attribute values to improve the solutions of Probabilistic k-Nearest-Neighbor (k-PNN) query. We prove that solutions must be better after data acquisition, and we devise algorithms to maximize expected improvement. Our experiment results demonstrate that the probability can be significantly improved with only a small number of data acquisitions.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Selective data acquisition for probabilistic K-NN query\",\"authors\":\"Yu-Chieh Lin, De-Nian Yang, Ming-Syan Chen\",\"doi\":\"10.1145/1871437.1871620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, management of uncertain data draws lots of attention to consider the granularity of devices and noises in collection and delivery of data. Previous works directly model and handle uncertain data to find the required results. However, when data uncertainty is not small or limited, users are not able to obtain useful insights and thereby tend to provide more resources to improve the solution, by reducing the uncertainty of data. In light of this issue, this paper formulates a new problem of choosing a given number of uncertain data objects for acquiring their attribute values to improve the solutions of Probabilistic k-Nearest-Neighbor (k-PNN) query. We prove that solutions must be better after data acquisition, and we devise algorithms to maximize expected improvement. Our experiment results demonstrate that the probability can be significantly improved with only a small number of data acquisitions.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,不确定数据的管理备受关注,需要考虑数据采集和传输过程中设备的粒度和噪声。以前的工作直接建模和处理不确定的数据,以找到所需的结果。然而,当数据的不确定性不小或有限时,用户无法获得有用的见解,从而倾向于通过减少数据的不确定性来提供更多的资源来改进解决方案。针对这一问题,本文提出了选择给定数量的不确定数据对象获取其属性值的新问题,以改进概率k-最近邻(k-PNN)查询的求解方法。我们证明了数据采集后的解决方案一定更好,并且我们设计了算法来最大化预期的改进。我们的实验结果表明,只需少量的数据采集,就可以显著提高概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective data acquisition for probabilistic K-NN query
Recently, management of uncertain data draws lots of attention to consider the granularity of devices and noises in collection and delivery of data. Previous works directly model and handle uncertain data to find the required results. However, when data uncertainty is not small or limited, users are not able to obtain useful insights and thereby tend to provide more resources to improve the solution, by reducing the uncertainty of data. In light of this issue, this paper formulates a new problem of choosing a given number of uncertain data objects for acquiring their attribute values to improve the solutions of Probabilistic k-Nearest-Neighbor (k-PNN) query. We prove that solutions must be better after data acquisition, and we devise algorithms to maximize expected improvement. Our experiment results demonstrate that the probability can be significantly improved with only a small number of data acquisitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信