{"title":"最佳收发雷达理论与应用","authors":"J. Guerci, S. Pillai","doi":"10.1109/RADAR.2000.851920","DOIUrl":null,"url":null,"abstract":"Recent advances in linear amplifier and arbitrary waveform generation technology have spawned interest in adaptive transmitter systems as a means for both optimizing target signal gain and enhancing ID. In this paper rigorous theoretical performance bounds are constructively established for the joint transmitter-target-channel-receiver optimization problem in the presence of additive colored noise (ACN), (e.g., interference multipath). For the ACN case, an analytical solution is obtained as an eigenvector (with associated maximum eigenvalue) of a homogeneous Fredholm integral equation of the second type. The kernel function is Hermitian and is obtained from the cascade of the target impulse response with the ACN whitening filter. The theoretical performance gains achievable over conventional transmitter strategies (e.g., chirp) are presented for various simulation scenarios including interference multipath mitigation. Also discussed is the potential effectiveness of an optimal discriminating pulse solution for the N-target ID problem that arises naturally from the theory.","PeriodicalId":286281,"journal":{"name":"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Theory and application of optimum transmit-receive radar\",\"authors\":\"J. Guerci, S. Pillai\",\"doi\":\"10.1109/RADAR.2000.851920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in linear amplifier and arbitrary waveform generation technology have spawned interest in adaptive transmitter systems as a means for both optimizing target signal gain and enhancing ID. In this paper rigorous theoretical performance bounds are constructively established for the joint transmitter-target-channel-receiver optimization problem in the presence of additive colored noise (ACN), (e.g., interference multipath). For the ACN case, an analytical solution is obtained as an eigenvector (with associated maximum eigenvalue) of a homogeneous Fredholm integral equation of the second type. The kernel function is Hermitian and is obtained from the cascade of the target impulse response with the ACN whitening filter. The theoretical performance gains achievable over conventional transmitter strategies (e.g., chirp) are presented for various simulation scenarios including interference multipath mitigation. Also discussed is the potential effectiveness of an optimal discriminating pulse solution for the N-target ID problem that arises naturally from the theory.\",\"PeriodicalId\":286281,\"journal\":{\"name\":\"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2000.851920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2000.851920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theory and application of optimum transmit-receive radar
Recent advances in linear amplifier and arbitrary waveform generation technology have spawned interest in adaptive transmitter systems as a means for both optimizing target signal gain and enhancing ID. In this paper rigorous theoretical performance bounds are constructively established for the joint transmitter-target-channel-receiver optimization problem in the presence of additive colored noise (ACN), (e.g., interference multipath). For the ACN case, an analytical solution is obtained as an eigenvector (with associated maximum eigenvalue) of a homogeneous Fredholm integral equation of the second type. The kernel function is Hermitian and is obtained from the cascade of the target impulse response with the ACN whitening filter. The theoretical performance gains achievable over conventional transmitter strategies (e.g., chirp) are presented for various simulation scenarios including interference multipath mitigation. Also discussed is the potential effectiveness of an optimal discriminating pulse solution for the N-target ID problem that arises naturally from the theory.