最佳收发雷达理论与应用

J. Guerci, S. Pillai
{"title":"最佳收发雷达理论与应用","authors":"J. Guerci, S. Pillai","doi":"10.1109/RADAR.2000.851920","DOIUrl":null,"url":null,"abstract":"Recent advances in linear amplifier and arbitrary waveform generation technology have spawned interest in adaptive transmitter systems as a means for both optimizing target signal gain and enhancing ID. In this paper rigorous theoretical performance bounds are constructively established for the joint transmitter-target-channel-receiver optimization problem in the presence of additive colored noise (ACN), (e.g., interference multipath). For the ACN case, an analytical solution is obtained as an eigenvector (with associated maximum eigenvalue) of a homogeneous Fredholm integral equation of the second type. The kernel function is Hermitian and is obtained from the cascade of the target impulse response with the ACN whitening filter. The theoretical performance gains achievable over conventional transmitter strategies (e.g., chirp) are presented for various simulation scenarios including interference multipath mitigation. Also discussed is the potential effectiveness of an optimal discriminating pulse solution for the N-target ID problem that arises naturally from the theory.","PeriodicalId":286281,"journal":{"name":"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Theory and application of optimum transmit-receive radar\",\"authors\":\"J. Guerci, S. Pillai\",\"doi\":\"10.1109/RADAR.2000.851920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in linear amplifier and arbitrary waveform generation technology have spawned interest in adaptive transmitter systems as a means for both optimizing target signal gain and enhancing ID. In this paper rigorous theoretical performance bounds are constructively established for the joint transmitter-target-channel-receiver optimization problem in the presence of additive colored noise (ACN), (e.g., interference multipath). For the ACN case, an analytical solution is obtained as an eigenvector (with associated maximum eigenvalue) of a homogeneous Fredholm integral equation of the second type. The kernel function is Hermitian and is obtained from the cascade of the target impulse response with the ACN whitening filter. The theoretical performance gains achievable over conventional transmitter strategies (e.g., chirp) are presented for various simulation scenarios including interference multipath mitigation. Also discussed is the potential effectiveness of an optimal discriminating pulse solution for the N-target ID problem that arises naturally from the theory.\",\"PeriodicalId\":286281,\"journal\":{\"name\":\"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2000.851920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2000.851920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

线性放大器和任意波形产生技术的最新进展引起了人们对自适应发射机系统的兴趣,作为优化目标信号增益和增强ID的手段。本文建设性地建立了存在加性有色噪声(ACN)(如干扰多径)的联合发射机-目标-信道-接收机优化问题的严格的理论性能界限。对于ACN情况,得到了第二类齐次Fredholm积分方程的特征向量(带最大特征值)的解析解。核函数是厄米核函数,由ACN白化滤波器对目标脉冲响应进行级联得到。在包括干扰多径缓解在内的各种仿真场景中,提出了比传统发射机策略(例如,啁啾)可实现的理论性能增益。还讨论了从理论中自然产生的n目标ID问题的最优判别脉冲解决方案的潜在有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory and application of optimum transmit-receive radar
Recent advances in linear amplifier and arbitrary waveform generation technology have spawned interest in adaptive transmitter systems as a means for both optimizing target signal gain and enhancing ID. In this paper rigorous theoretical performance bounds are constructively established for the joint transmitter-target-channel-receiver optimization problem in the presence of additive colored noise (ACN), (e.g., interference multipath). For the ACN case, an analytical solution is obtained as an eigenvector (with associated maximum eigenvalue) of a homogeneous Fredholm integral equation of the second type. The kernel function is Hermitian and is obtained from the cascade of the target impulse response with the ACN whitening filter. The theoretical performance gains achievable over conventional transmitter strategies (e.g., chirp) are presented for various simulation scenarios including interference multipath mitigation. Also discussed is the potential effectiveness of an optimal discriminating pulse solution for the N-target ID problem that arises naturally from the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信