适应统计物理

Nikolai Perunov, R. Marsland, Jeremy L. England
{"title":"适应统计物理","authors":"Nikolai Perunov, R. Marsland, Jeremy L. England","doi":"10.1103/PhysRevX.6.021036","DOIUrl":null,"url":null,"abstract":"All living things exhibit adaptations that enable them to survive and reproduce in the natural environment that they inhabit. From a biological standpoint, it has long been understood that adaptation comes from natural selection, whereby maladapted individuals do not pass their traits effectively to future generations. However, we may also consider the phenomenon of adaptation from the standpoint of physics, and ask whether it is possible to delineate what the difference is in terms of physical properties between something that is well-adapted to its surrounding environment, and something that is not. In this work, we undertake to address this question from a theoretical standpoint. Building on past fundamental results in far-from-equilibrium statistical mechanics, we demonstrate a generalization of the Helmholtz free energy for the finite-time stochastic evolution of driven Newtonian matter. By analyzing this expression term by term, we are able to argue for a general tendency in driven many-particle systems towards self-organization into states formed through exceptionally reliable absorption and dissipation of work energy from the surrounding environment. Subsequently, we illustrate the mechanism of this general tendency towards physical adaptation by analyzing the process of random hopping in driven energy landscapes.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Statistical Physics of Adaptation\",\"authors\":\"Nikolai Perunov, R. Marsland, Jeremy L. England\",\"doi\":\"10.1103/PhysRevX.6.021036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All living things exhibit adaptations that enable them to survive and reproduce in the natural environment that they inhabit. From a biological standpoint, it has long been understood that adaptation comes from natural selection, whereby maladapted individuals do not pass their traits effectively to future generations. However, we may also consider the phenomenon of adaptation from the standpoint of physics, and ask whether it is possible to delineate what the difference is in terms of physical properties between something that is well-adapted to its surrounding environment, and something that is not. In this work, we undertake to address this question from a theoretical standpoint. Building on past fundamental results in far-from-equilibrium statistical mechanics, we demonstrate a generalization of the Helmholtz free energy for the finite-time stochastic evolution of driven Newtonian matter. By analyzing this expression term by term, we are able to argue for a general tendency in driven many-particle systems towards self-organization into states formed through exceptionally reliable absorption and dissipation of work energy from the surrounding environment. Subsequently, we illustrate the mechanism of this general tendency towards physical adaptation by analyzing the process of random hopping in driven energy landscapes.\",\"PeriodicalId\":360136,\"journal\":{\"name\":\"arXiv: Biological Physics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevX.6.021036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.6.021036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

所有生物都表现出适应能力,使它们能够在它们所居住的自然环境中生存和繁殖。从生物学的角度来看,长期以来人们一直认为适应来自自然选择,因此不适应的个体不能将其特征有效地传给后代。然而,我们也可以从物理学的角度来考虑适应现象,并问是否有可能描绘出很好地适应周围环境的事物与不适应周围环境的事物在物理性质上的区别。在这项工作中,我们承诺从理论的角度来解决这个问题。在过去的非平衡统计力学的基本结果的基础上,我们展示了驱动牛顿物质的有限时间随机演化的亥姆霍兹自由能的推广。通过逐项分析这个表达式,我们能够论证在被驱动的多粒子系统中有一种普遍趋势,即通过从周围环境中异常可靠地吸收和耗散功而形成自组织状态。随后,我们通过分析驱动能量景观中随机跳跃的过程来说明这种普遍倾向于物理适应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Physics of Adaptation
All living things exhibit adaptations that enable them to survive and reproduce in the natural environment that they inhabit. From a biological standpoint, it has long been understood that adaptation comes from natural selection, whereby maladapted individuals do not pass their traits effectively to future generations. However, we may also consider the phenomenon of adaptation from the standpoint of physics, and ask whether it is possible to delineate what the difference is in terms of physical properties between something that is well-adapted to its surrounding environment, and something that is not. In this work, we undertake to address this question from a theoretical standpoint. Building on past fundamental results in far-from-equilibrium statistical mechanics, we demonstrate a generalization of the Helmholtz free energy for the finite-time stochastic evolution of driven Newtonian matter. By analyzing this expression term by term, we are able to argue for a general tendency in driven many-particle systems towards self-organization into states formed through exceptionally reliable absorption and dissipation of work energy from the surrounding environment. Subsequently, we illustrate the mechanism of this general tendency towards physical adaptation by analyzing the process of random hopping in driven energy landscapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信