鲁棒快速监督离散散列的截断柯西

Yao Xiao, Xiangguang Dai, Xiangqin Dai, Nian Zhang
{"title":"鲁棒快速监督离散散列的截断柯西","authors":"Yao Xiao, Xiangguang Dai, Xiangqin Dai, Nian Zhang","doi":"10.1109/ICIST52614.2021.9440614","DOIUrl":null,"url":null,"abstract":"We propose a novel data-dependent hashing algorithm named Truncated Cauchy for Robust fast supervised discrete hashing (RFSDH) for robust subspace learning. In this paper, a Truncated Cauchy loss is proposed to measure the factorization error, which can handle outliers by truncating large errors. The proposed method can inhibit the unreliable binary codes, which generate the optimal binary codes. Our method can be expressed as a mixed-integer optimization problem, which can be to solve by iterative discrete cyclic coordinate descent. RFSDH method accomplishes outperform other hashing learning methods in image retrieval effect on two large scale datasets.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"46 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truncated Cauchy for Robust fast supervised discrete hashing\",\"authors\":\"Yao Xiao, Xiangguang Dai, Xiangqin Dai, Nian Zhang\",\"doi\":\"10.1109/ICIST52614.2021.9440614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel data-dependent hashing algorithm named Truncated Cauchy for Robust fast supervised discrete hashing (RFSDH) for robust subspace learning. In this paper, a Truncated Cauchy loss is proposed to measure the factorization error, which can handle outliers by truncating large errors. The proposed method can inhibit the unreliable binary codes, which generate the optimal binary codes. Our method can be expressed as a mixed-integer optimization problem, which can be to solve by iterative discrete cyclic coordinate descent. RFSDH method accomplishes outperform other hashing learning methods in image retrieval effect on two large scale datasets.\",\"PeriodicalId\":371599,\"journal\":{\"name\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"46 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST52614.2021.9440614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于数据的鲁棒快速监督离散哈希算法(RFSDH),用于鲁棒子空间学习。本文提出了一种截断柯西损失来度量因数分解误差,通过截断较大的误差来处理异常值。该方法可以抑制不可靠二进制码,从而生成最优二进制码。我们的方法可以表示为一个混合整数优化问题,可以通过迭代离散循环坐标下降来求解。RFSDH方法在两个大规模数据集上的图像检索效果优于其他哈希学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Truncated Cauchy for Robust fast supervised discrete hashing
We propose a novel data-dependent hashing algorithm named Truncated Cauchy for Robust fast supervised discrete hashing (RFSDH) for robust subspace learning. In this paper, a Truncated Cauchy loss is proposed to measure the factorization error, which can handle outliers by truncating large errors. The proposed method can inhibit the unreliable binary codes, which generate the optimal binary codes. Our method can be expressed as a mixed-integer optimization problem, which can be to solve by iterative discrete cyclic coordinate descent. RFSDH method accomplishes outperform other hashing learning methods in image retrieval effect on two large scale datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信