Wima Puspita, Defrianto Defrianto, Yan Soerbakti
{"title":"PREDIKSI KADAR PARTICULATE MATTER (PM10) MENGGUNAKAN JARINGAN SYARAF TIRUAN DI KOTA PEKANBARU","authors":"Wima Puspita, Defrianto Defrianto, Yan Soerbakti","doi":"10.31258/JKFI.18.1.1-4","DOIUrl":null,"url":null,"abstract":"This aims of this study is to predict particulate matter (PM10) levels in Pekanbaru using back propagation artificial neural networks (ANN) based on weather factors. The data used in the form of data from 2014 – 2017 as training data and 2018 data as test data. The architecture proposed is composed of 5 – 5 – 1 neurons and uses the logig-logsig-purelin functions. The training process produces a traincgb with a small MSE value and in the process of testing the PM10 prediction compared to BMKG data has an average error of 26.9062%.","PeriodicalId":403286,"journal":{"name":"Komunikasi Fisika Indonesia","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komunikasi Fisika Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31258/JKFI.18.1.1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是利用基于天气因素的反向传播人工神经网络(ANN)预测北干巴鲁的颗粒物(PM10)水平。数据采用2014 - 2017年的数据作为训练数据,2018年的数据作为测试数据。该结构由5 - 5 - 1个神经元组成,并使用log -log -purelin函数。训练过程产生一个MSE值较小的traincgb,在测试PM10预测过程中,与BMKG数据相比,平均误差为26.9062%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDIKSI KADAR PARTICULATE MATTER (PM10) MENGGUNAKAN JARINGAN SYARAF TIRUAN DI KOTA PEKANBARU
This aims of this study is to predict particulate matter (PM10) levels in Pekanbaru using back propagation artificial neural networks (ANN) based on weather factors. The data used in the form of data from 2014 – 2017 as training data and 2018 data as test data. The architecture proposed is composed of 5 – 5 – 1 neurons and uses the logig-logsig-purelin functions. The training process produces a traincgb with a small MSE value and in the process of testing the PM10 prediction compared to BMKG data has an average error of 26.9062%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信