应用正交最小二乘(OLS)选择Mel频率倒谱系数用于MLP分类器的口语字母分类

M. Rozali, I. Yassin, A. Zabidi, W. Mansor, N. Tahir
{"title":"应用正交最小二乘(OLS)选择Mel频率倒谱系数用于MLP分类器的口语字母分类","authors":"M. Rozali, I. Yassin, A. Zabidi, W. Mansor, N. Tahir","doi":"10.1109/CSPA.2011.5759923","DOIUrl":null,"url":null,"abstract":"This paper describes an application of the Orthogonal Least Squares (OLS) algorithm for feature selection of spoken letters. Traditionally used for system identification purposes, the OLS method was used to select important Mel-Frequency Cepstrum Coefficients (MFCC) for classification of two spoken letters - ‘A’ and ‘S’ using Multi-Layer Perceptron (MLP) neural network. We evaluated several network structures and parameters to determine the best performance in terms of accuracy and speed. The result found that OLS is an effective feature selection method, with the best classification performance of 85% with 6 hidden units.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of Orthogonal Least Square (OLS) for selection of Mel Frequency Cepstrum Coefficients for classification of spoken letters using MLP classifier\",\"authors\":\"M. Rozali, I. Yassin, A. Zabidi, W. Mansor, N. Tahir\",\"doi\":\"10.1109/CSPA.2011.5759923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an application of the Orthogonal Least Squares (OLS) algorithm for feature selection of spoken letters. Traditionally used for system identification purposes, the OLS method was used to select important Mel-Frequency Cepstrum Coefficients (MFCC) for classification of two spoken letters - ‘A’ and ‘S’ using Multi-Layer Perceptron (MLP) neural network. We evaluated several network structures and parameters to determine the best performance in terms of accuracy and speed. The result found that OLS is an effective feature selection method, with the best classification performance of 85% with 6 hidden units.\",\"PeriodicalId\":282179,\"journal\":{\"name\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2011.5759923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了正交最小二乘(OLS)算法在语音字母特征选择中的应用。传统上用于系统识别目的,使用OLS方法选择重要的Mel-Frequency倒频谱系数(MFCC),使用多层感知器(MLP)神经网络对两个口语字母“A”和“S”进行分类。我们评估了几种网络结构和参数,以确定在准确性和速度方面的最佳性能。结果发现,OLS是一种有效的特征选择方法,在6个隐藏单元的情况下,分类性能达到了85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Orthogonal Least Square (OLS) for selection of Mel Frequency Cepstrum Coefficients for classification of spoken letters using MLP classifier
This paper describes an application of the Orthogonal Least Squares (OLS) algorithm for feature selection of spoken letters. Traditionally used for system identification purposes, the OLS method was used to select important Mel-Frequency Cepstrum Coefficients (MFCC) for classification of two spoken letters - ‘A’ and ‘S’ using Multi-Layer Perceptron (MLP) neural network. We evaluated several network structures and parameters to determine the best performance in terms of accuracy and speed. The result found that OLS is an effective feature selection method, with the best classification performance of 85% with 6 hidden units.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信