具有平衡码字的极性码

Utkarsh Gupta, H. M. Kiah, A. Vardy, Hanwen Yao
{"title":"具有平衡码字的极性码","authors":"Utkarsh Gupta, H. M. Kiah, A. Vardy, Hanwen Yao","doi":"10.1109/ISIT44484.2020.9174042","DOIUrl":null,"url":null,"abstract":"The imbalance of a binary word refers to the absolute difference between the number of ones and zeros in the word. Motivated by applications in DNA-based data storage and the success of polar codes, we study the problem of reducing imbalance in the codewords of a polar code. To this end, we adapt the technique of Mazumdar, Roth, and Vontobel by considering balancing sets that correspond to low-order Reed-Muller (RM) codes. Such balancing sets are likely to be included as subcodes in polar codes.Specifically, using the first-order RM code, we show that any message can be encoded into a length-n polar codeword with imbalance at most o(n) in O(nlogn)-time. We then reduce the imbalance even further using two methods. First, we constrain the ambient space $\\mathbb{X}$ and analyze the imbalance that the first-order RM code can achieve for words in $\\mathbb{X}$. We demonstrate that for codelengths up to 128, the first-order RM code achieves zero imbalance for appropriate choices of $\\mathbb{X}$ that sacrifice only a few message bits. Second, we augment the balancing set by considering higher order RM codes. We give a simple recursive upper bound for the guaranteed imbalance of RM codes. We also prove that the second-order RM code $\\mathbb{R}\\mathbb{M}\\left( {2,m} \\right)$ balances all even-weight words for m ⩽ 5, while the RM code of order m − 3 balances all even-weight words for m ⩾ 5.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar Codes with Balanced Codewords\",\"authors\":\"Utkarsh Gupta, H. M. Kiah, A. Vardy, Hanwen Yao\",\"doi\":\"10.1109/ISIT44484.2020.9174042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The imbalance of a binary word refers to the absolute difference between the number of ones and zeros in the word. Motivated by applications in DNA-based data storage and the success of polar codes, we study the problem of reducing imbalance in the codewords of a polar code. To this end, we adapt the technique of Mazumdar, Roth, and Vontobel by considering balancing sets that correspond to low-order Reed-Muller (RM) codes. Such balancing sets are likely to be included as subcodes in polar codes.Specifically, using the first-order RM code, we show that any message can be encoded into a length-n polar codeword with imbalance at most o(n) in O(nlogn)-time. We then reduce the imbalance even further using two methods. First, we constrain the ambient space $\\\\mathbb{X}$ and analyze the imbalance that the first-order RM code can achieve for words in $\\\\mathbb{X}$. We demonstrate that for codelengths up to 128, the first-order RM code achieves zero imbalance for appropriate choices of $\\\\mathbb{X}$ that sacrifice only a few message bits. Second, we augment the balancing set by considering higher order RM codes. We give a simple recursive upper bound for the guaranteed imbalance of RM codes. We also prove that the second-order RM code $\\\\mathbb{R}\\\\mathbb{M}\\\\left( {2,m} \\\\right)$ balances all even-weight words for m ⩽ 5, while the RM code of order m − 3 balances all even-weight words for m ⩾ 5.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二进制词的不平衡是指该词中1和0的绝对数量之差。由于在dna数据存储中的应用和极性码的成功,我们研究了降低极性码码字不平衡的问题。为此,我们采用Mazumdar, Roth和Vontobel的技术,考虑与低阶Reed-Muller (RM)码对应的平衡集。这种平衡集很可能作为子码包含在极码中。具体地说,使用一阶RM编码,我们证明了任何消息都可以在o(nlogn)时间内编码成长度为n且不平衡最多为o(n)的极性码字。然后我们使用两种方法进一步减小不平衡。首先,我们约束环境空间$\mathbb{X}$,并分析一阶RM代码可以为$\mathbb{X}$中的单词实现的不平衡。我们证明,对于高达128的码长,一阶RM代码在适当选择$\mathbb{X}$时实现了零不平衡,只牺牲了几个消息位。其次,我们通过考虑高阶RM码来扩大平衡集。给出了RM码保证不平衡的一个简单递归上界。我们还证明了二阶RM代码$\mathbb{R}\mathbb{M}\left({2, M}\ right)$平衡了M≥5的所有偶数权重词,而M−3阶RM代码平衡了M≥5的所有偶数权重词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polar Codes with Balanced Codewords
The imbalance of a binary word refers to the absolute difference between the number of ones and zeros in the word. Motivated by applications in DNA-based data storage and the success of polar codes, we study the problem of reducing imbalance in the codewords of a polar code. To this end, we adapt the technique of Mazumdar, Roth, and Vontobel by considering balancing sets that correspond to low-order Reed-Muller (RM) codes. Such balancing sets are likely to be included as subcodes in polar codes.Specifically, using the first-order RM code, we show that any message can be encoded into a length-n polar codeword with imbalance at most o(n) in O(nlogn)-time. We then reduce the imbalance even further using two methods. First, we constrain the ambient space $\mathbb{X}$ and analyze the imbalance that the first-order RM code can achieve for words in $\mathbb{X}$. We demonstrate that for codelengths up to 128, the first-order RM code achieves zero imbalance for appropriate choices of $\mathbb{X}$ that sacrifice only a few message bits. Second, we augment the balancing set by considering higher order RM codes. We give a simple recursive upper bound for the guaranteed imbalance of RM codes. We also prove that the second-order RM code $\mathbb{R}\mathbb{M}\left( {2,m} \right)$ balances all even-weight words for m ⩽ 5, while the RM code of order m − 3 balances all even-weight words for m ⩾ 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信