基于机器学习和大数据的结构约束各向异性多波反演在中东OBC项目中的应用

V. Prieux, T. Bardainne, A. Meffre, H. Prigent, F. J. V. Kleef, M. Waqas, L. Hou
{"title":"基于机器学习和大数据的结构约束各向异性多波反演在中东OBC项目中的应用","authors":"V. Prieux, T. Bardainne, A. Meffre, H. Prigent, F. J. V. Kleef, M. Waqas, L. Hou","doi":"10.3997/2214-4609.202011047","DOIUrl":null,"url":null,"abstract":"Summary Challenged by the presence of strong anisotropy and velocity reversals in the near surface, we apply structurally constrained anisotropic multi-wave inversion (MWI), over 1200 km2 of OBC data offshore Abu Dhabi. MWI aims to simultaneously invert the P-wave first breaks (FB), the ground roll dispersion curves (DC) and the vertical two-way times (VTWT) of the main interfaces. In this study, MWI is extended to invert for the Thomsen’s anisotropic parameter  that is constrained by the FB and the VTWT. The high resolution Vp and  obtained from MWI greatly contribute to the velocity model building. Additionally, geomechanical parameters like the uniaxial compressive strength (UCS) are also derived from the combination of Vp and Vs. We highlight the importance of proper preconditioning of the DC and FB inputs using data mining tools when applying the method to a large production dataset. Machine learning (ML) is used to better account for the vertical and horizontal geological variability of the survey in picking the phase velocity, while data mining tools allow interactive QC and editing of the FB picks on large data sets.","PeriodicalId":354849,"journal":{"name":"EAGE 2020 Annual Conference & Exhibition Online","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structurally Constrained Anisotropic Multi-Wave-Inversion Utilizing Machine Learning and Big Data on a Middle East OBC Project\",\"authors\":\"V. Prieux, T. Bardainne, A. Meffre, H. Prigent, F. J. V. Kleef, M. Waqas, L. Hou\",\"doi\":\"10.3997/2214-4609.202011047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Challenged by the presence of strong anisotropy and velocity reversals in the near surface, we apply structurally constrained anisotropic multi-wave inversion (MWI), over 1200 km2 of OBC data offshore Abu Dhabi. MWI aims to simultaneously invert the P-wave first breaks (FB), the ground roll dispersion curves (DC) and the vertical two-way times (VTWT) of the main interfaces. In this study, MWI is extended to invert for the Thomsen’s anisotropic parameter  that is constrained by the FB and the VTWT. The high resolution Vp and  obtained from MWI greatly contribute to the velocity model building. Additionally, geomechanical parameters like the uniaxial compressive strength (UCS) are also derived from the combination of Vp and Vs. We highlight the importance of proper preconditioning of the DC and FB inputs using data mining tools when applying the method to a large production dataset. Machine learning (ML) is used to better account for the vertical and horizontal geological variability of the survey in picking the phase velocity, while data mining tools allow interactive QC and editing of the FB picks on large data sets.\",\"PeriodicalId\":354849,\"journal\":{\"name\":\"EAGE 2020 Annual Conference & Exhibition Online\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAGE 2020 Annual Conference & Exhibition Online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202011047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAGE 2020 Annual Conference & Exhibition Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202011047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于近地表存在强烈的各向异性和速度反转,我们在阿布扎比海上超过1200平方公里的OBC数据中应用了结构约束各向异性多波反演(MWI)。MWI旨在同时反演主界面的纵波初破波(FB)、地滚频散曲线(DC)和垂直双向时间(VTWT)。在本研究中,将MWI扩展到反演受FB和VTWT约束的thomson’s各向异性参数(tomsen’s各向异性参数)( > >)。MWI获得的高分辨率Vp和高分辨率的分辨率为速度模型的建立提供了很大的帮助。此外,地质力学参数,如单轴抗压强度(UCS)也是由Vp和vs的组合得出的。我们强调了在将该方法应用于大型生产数据集时,使用数据挖掘工具对直流和FB输入进行适当预处理的重要性。机器学习(ML)用于更好地解释在选择相速度时调查的垂直和水平地质变化,而数据挖掘工具允许对大型数据集的FB选择进行交互式QC和编辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structurally Constrained Anisotropic Multi-Wave-Inversion Utilizing Machine Learning and Big Data on a Middle East OBC Project
Summary Challenged by the presence of strong anisotropy and velocity reversals in the near surface, we apply structurally constrained anisotropic multi-wave inversion (MWI), over 1200 km2 of OBC data offshore Abu Dhabi. MWI aims to simultaneously invert the P-wave first breaks (FB), the ground roll dispersion curves (DC) and the vertical two-way times (VTWT) of the main interfaces. In this study, MWI is extended to invert for the Thomsen’s anisotropic parameter  that is constrained by the FB and the VTWT. The high resolution Vp and  obtained from MWI greatly contribute to the velocity model building. Additionally, geomechanical parameters like the uniaxial compressive strength (UCS) are also derived from the combination of Vp and Vs. We highlight the importance of proper preconditioning of the DC and FB inputs using data mining tools when applying the method to a large production dataset. Machine learning (ML) is used to better account for the vertical and horizontal geological variability of the survey in picking the phase velocity, while data mining tools allow interactive QC and editing of the FB picks on large data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信