Apache Spark上动态自动检查点体系结构的定义

Paulo Vinicius Cardoso, P. Barcelos
{"title":"Apache Spark上动态自动检查点体系结构的定义","authors":"Paulo Vinicius Cardoso, P. Barcelos","doi":"10.1109/SRDS.2018.00041","DOIUrl":null,"url":null,"abstract":"Towards a scenario where failures on large-scale systems are inevitable, fault tolerant mechanisms must be efficiently applied. Checkpoint is a widely used technique that consists in saving data states for a fast recovery in case of failure. On Apache Spark – framework that uses in-memory data abstraction –, checkpoint serves to store datasets in a reliable source, so it helps on recovery process of complex datasets. However, once checkpoints must be defined by developer via source code, it may be a hard challenge to choose proper checkpoint scenarios. Therefore, this work proposes an automatic mechanism for checkpoint on Spark, which consists in monitoring system behavior and taking automatic checkpoint process according to defined policies.","PeriodicalId":219374,"journal":{"name":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Definition of an Architecture for Dynamic and Automatic Checkpoints on Apache Spark\",\"authors\":\"Paulo Vinicius Cardoso, P. Barcelos\",\"doi\":\"10.1109/SRDS.2018.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Towards a scenario where failures on large-scale systems are inevitable, fault tolerant mechanisms must be efficiently applied. Checkpoint is a widely used technique that consists in saving data states for a fast recovery in case of failure. On Apache Spark – framework that uses in-memory data abstraction –, checkpoint serves to store datasets in a reliable source, so it helps on recovery process of complex datasets. However, once checkpoints must be defined by developer via source code, it may be a hard challenge to choose proper checkpoint scenarios. Therefore, this work proposes an automatic mechanism for checkpoint on Spark, which consists in monitoring system behavior and taking automatic checkpoint process according to defined policies.\",\"PeriodicalId\":219374,\"journal\":{\"name\":\"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2018.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对大规模系统故障不可避免的情况,必须有效地应用容错机制。检查点是一种广泛使用的技术,它保存数据状态,以便在发生故障时快速恢复。在Apache Spark(使用内存中数据抽象的框架)上,检查点用于将数据集存储在可靠的数据源中,因此它有助于复杂数据集的恢复过程。然而,一旦检查点必须由开发人员通过源代码定义,选择合适的检查点场景可能是一个困难的挑战。因此,本文提出了一种基于Spark的自动检查点机制,即监控系统行为,并根据定义的策略进行自动检查点处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Definition of an Architecture for Dynamic and Automatic Checkpoints on Apache Spark
Towards a scenario where failures on large-scale systems are inevitable, fault tolerant mechanisms must be efficiently applied. Checkpoint is a widely used technique that consists in saving data states for a fast recovery in case of failure. On Apache Spark – framework that uses in-memory data abstraction –, checkpoint serves to store datasets in a reliable source, so it helps on recovery process of complex datasets. However, once checkpoints must be defined by developer via source code, it may be a hard challenge to choose proper checkpoint scenarios. Therefore, this work proposes an automatic mechanism for checkpoint on Spark, which consists in monitoring system behavior and taking automatic checkpoint process according to defined policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信