投影检索:理论与算法

M. Fickus, D. Mixon
{"title":"投影检索:理论与算法","authors":"M. Fickus, D. Mixon","doi":"10.1109/SAMPTA.2015.7148876","DOIUrl":null,"url":null,"abstract":"We consider the fundamental problem of determining a low-rank orthogonal projection operator P from measurements of the form || Px||. First, we leverage a nonembedding result for the complex Grassmannian to establish and analyze a lower bound on the number of measurements necessary to uniquely determine every possible P. Next, we provide a collection of particularly few measurement vectors that uniquely determine almost every P. Finally, we propose manifold-constrained least-squares optimization as a general technique for projection retrieval.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Projection retrieval: Theory and algorithms\",\"authors\":\"M. Fickus, D. Mixon\",\"doi\":\"10.1109/SAMPTA.2015.7148876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the fundamental problem of determining a low-rank orthogonal projection operator P from measurements of the form || Px||. First, we leverage a nonembedding result for the complex Grassmannian to establish and analyze a lower bound on the number of measurements necessary to uniquely determine every possible P. Next, we provide a collection of particularly few measurement vectors that uniquely determine almost every P. Finally, we propose manifold-constrained least-squares optimization as a general technique for projection retrieval.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑从形式为|| Px||的测量中确定低秩正交投影算子P的基本问题。首先,我们利用复杂Grassmannian的非嵌入结果来建立和分析唯一确定每个可能p所需的测量数量的下界。接下来,我们提供了一组特别少的测量向量,这些测量向量可以唯一地确定几乎每个p。最后,我们提出流形约束最小二乘优化作为投影检索的一般技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projection retrieval: Theory and algorithms
We consider the fundamental problem of determining a low-rank orthogonal projection operator P from measurements of the form || Px||. First, we leverage a nonembedding result for the complex Grassmannian to establish and analyze a lower bound on the number of measurements necessary to uniquely determine every possible P. Next, we provide a collection of particularly few measurement vectors that uniquely determine almost every P. Finally, we propose manifold-constrained least-squares optimization as a general technique for projection retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信