Eleonora Testa, Siang-Yun Lee, Heinz Riener, G. Micheli
{"title":"AQFP超导电路的代数和布尔优化方法","authors":"Eleonora Testa, Siang-Yun Lee, Heinz Riener, G. Micheli","doi":"10.1145/3394885.3431606","DOIUrl":null,"url":null,"abstract":"Adiabatic quantum-flux-parametron (AQFP) circuits are a family of superconducting electronic (SCE) circuits that have recently gained growing interest due to their low-energy consumption, and may serve as alternative technology to overcome the down-scaling limitations of CMOS. AQFP logic design differs from classic digital design because logic cells are natively abstracted by the majority function, require data and clocking in specific timing windows, and have fan-out limitations. We describe here a novel majority-based logic synthesis flow addressing AQFP technology. In particular, we present both algebraic and Boolean methods over majority-inverter graphs (MIGs) aiming at optimizing size and depth of logic circuits. The technology limitations and constraints of the AQFP technology (e.g., path balancing and maximum fanout) are considered during optimization. The experimental results show that our flow reduces both size and depth of MIGs, while meeting the constraint of the AQFP technology. Further, we show an improvement for both area and delay when the MIGs are mapped into the AQFP technology.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Algebraic and Boolean Optimization Methods for AQFP Superconducting Circuits\",\"authors\":\"Eleonora Testa, Siang-Yun Lee, Heinz Riener, G. Micheli\",\"doi\":\"10.1145/3394885.3431606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adiabatic quantum-flux-parametron (AQFP) circuits are a family of superconducting electronic (SCE) circuits that have recently gained growing interest due to their low-energy consumption, and may serve as alternative technology to overcome the down-scaling limitations of CMOS. AQFP logic design differs from classic digital design because logic cells are natively abstracted by the majority function, require data and clocking in specific timing windows, and have fan-out limitations. We describe here a novel majority-based logic synthesis flow addressing AQFP technology. In particular, we present both algebraic and Boolean methods over majority-inverter graphs (MIGs) aiming at optimizing size and depth of logic circuits. The technology limitations and constraints of the AQFP technology (e.g., path balancing and maximum fanout) are considered during optimization. The experimental results show that our flow reduces both size and depth of MIGs, while meeting the constraint of the AQFP technology. Further, we show an improvement for both area and delay when the MIGs are mapped into the AQFP technology.\",\"PeriodicalId\":186307,\"journal\":{\"name\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3394885.3431606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algebraic and Boolean Optimization Methods for AQFP Superconducting Circuits
Adiabatic quantum-flux-parametron (AQFP) circuits are a family of superconducting electronic (SCE) circuits that have recently gained growing interest due to their low-energy consumption, and may serve as alternative technology to overcome the down-scaling limitations of CMOS. AQFP logic design differs from classic digital design because logic cells are natively abstracted by the majority function, require data and clocking in specific timing windows, and have fan-out limitations. We describe here a novel majority-based logic synthesis flow addressing AQFP technology. In particular, we present both algebraic and Boolean methods over majority-inverter graphs (MIGs) aiming at optimizing size and depth of logic circuits. The technology limitations and constraints of the AQFP technology (e.g., path balancing and maximum fanout) are considered during optimization. The experimental results show that our flow reduces both size and depth of MIGs, while meeting the constraint of the AQFP technology. Further, we show an improvement for both area and delay when the MIGs are mapped into the AQFP technology.