迈向学习调度算法的通用环境

Renato L. F. Cunha, L. Chaimowicz
{"title":"迈向学习调度算法的通用环境","authors":"Renato L. F. Cunha, L. Chaimowicz","doi":"10.1109/MASCOTS50786.2020.9285940","DOIUrl":null,"url":null,"abstract":"We propose a way to model and integrate HPC scheduling simulators into a popular Reinforcement Learning toolkit. We show experimentally that such an approach not only aids researchers being able to iterate faster by means of software reuse, but also to achieve state-of-the-art performance with 10x less interactions with the environment. We validate the simulation model's correctness by using unit tests, assertions and experimental comparisons. We also share an open source implementation of the model that will benefit researchers in resource management tasks assisted by Machine Learning.","PeriodicalId":272614,"journal":{"name":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards a common environment for learning scheduling algorithms\",\"authors\":\"Renato L. F. Cunha, L. Chaimowicz\",\"doi\":\"10.1109/MASCOTS50786.2020.9285940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a way to model and integrate HPC scheduling simulators into a popular Reinforcement Learning toolkit. We show experimentally that such an approach not only aids researchers being able to iterate faster by means of software reuse, but also to achieve state-of-the-art performance with 10x less interactions with the environment. We validate the simulation model's correctness by using unit tests, assertions and experimental comparisons. We also share an open source implementation of the model that will benefit researchers in resource management tasks assisted by Machine Learning.\",\"PeriodicalId\":272614,\"journal\":{\"name\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS50786.2020.9285940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS50786.2020.9285940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种方法来建模和集成HPC调度模拟器到一个流行的强化学习工具包。我们通过实验证明,这种方法不仅可以帮助研究人员通过软件重用更快地迭代,而且还可以通过减少10倍的与环境的交互来实现最先进的性能。通过单元测试、断言和实验对比验证了仿真模型的正确性。我们还分享了该模型的开源实现,这将使机器学习辅助下的资源管理任务的研究人员受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a common environment for learning scheduling algorithms
We propose a way to model and integrate HPC scheduling simulators into a popular Reinforcement Learning toolkit. We show experimentally that such an approach not only aids researchers being able to iterate faster by means of software reuse, but also to achieve state-of-the-art performance with 10x less interactions with the environment. We validate the simulation model's correctness by using unit tests, assertions and experimental comparisons. We also share an open source implementation of the model that will benefit researchers in resource management tasks assisted by Machine Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信