多孔介质非傅立叶热响应的实验验证

A. Nnanna, K. T. Harris, A. Haji-sheikh
{"title":"多孔介质非傅立叶热响应的实验验证","authors":"A. Nnanna, K. T. Harris, A. Haji-sheikh","doi":"10.1115/imece2001/htd-24279","DOIUrl":null,"url":null,"abstract":"\n An experimental validation of non-Fourier behavior in porous media due to short time thermal perturbation is presented. The governing energy equation is formulated based on the two-equation model and the non-Fourier model. This formulation leads to the emergence of four thermal parameters: lag-time in heat flux τq, lag-time τt in temperature due to interstitial heat transfer coefficient h, and lag-time in the transient response of the temperature gradient τx in the heat flux equation. These parameters account for the microstructural thermal interaction between the fluid and neighboring solid matrix as well as the delay time needed for both phases to approach thermal equilibrium. An experimental verification of the microscale model was performed under standard laboratory conditions. The values of the aforementioned thermal parameters were determined to compute the fluid and solid temperatures. Results predicted from three models (classical Fourier, non-Fourier, and experimental) were compared. It indicates an excellent agreement between the non-Fourier and the experimental model, and a significant deviation of Fourier prediction from the experimental results.","PeriodicalId":426926,"journal":{"name":"Heat Transfer: Volume 4 — Combustion and Energy Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Validation of Non-Fourier Thermal Response in Porous Media\",\"authors\":\"A. Nnanna, K. T. Harris, A. Haji-sheikh\",\"doi\":\"10.1115/imece2001/htd-24279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An experimental validation of non-Fourier behavior in porous media due to short time thermal perturbation is presented. The governing energy equation is formulated based on the two-equation model and the non-Fourier model. This formulation leads to the emergence of four thermal parameters: lag-time in heat flux τq, lag-time τt in temperature due to interstitial heat transfer coefficient h, and lag-time in the transient response of the temperature gradient τx in the heat flux equation. These parameters account for the microstructural thermal interaction between the fluid and neighboring solid matrix as well as the delay time needed for both phases to approach thermal equilibrium. An experimental verification of the microscale model was performed under standard laboratory conditions. The values of the aforementioned thermal parameters were determined to compute the fluid and solid temperatures. Results predicted from three models (classical Fourier, non-Fourier, and experimental) were compared. It indicates an excellent agreement between the non-Fourier and the experimental model, and a significant deviation of Fourier prediction from the experimental results.\",\"PeriodicalId\":426926,\"journal\":{\"name\":\"Heat Transfer: Volume 4 — Combustion and Energy Systems\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4 — Combustion and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/htd-24279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4 — Combustion and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/htd-24279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对多孔介质中由于短时间热扰动引起的非傅立叶行为进行了实验验证。在双方程模型和非傅立叶模型的基础上,建立了控制能量方程。这个公式导致了四个热参数的出现:热流通量的滞后时间τq,由于间隙传热系数h引起的温度滞后时间τt,热流通量方程中温度梯度的瞬态响应的滞后时间τx。这些参数解释了流体与邻近固体基质之间的微观结构热相互作用以及两相接近热平衡所需的延迟时间。在标准实验室条件下对微尺度模型进行了实验验证。确定上述热参数的值以计算流体和固体温度。比较了三种模型(经典傅立叶、非傅立叶和实验)的预测结果。结果表明,非傅立叶预测与实验模型吻合良好,而傅立叶预测与实验结果有较大偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Validation of Non-Fourier Thermal Response in Porous Media
An experimental validation of non-Fourier behavior in porous media due to short time thermal perturbation is presented. The governing energy equation is formulated based on the two-equation model and the non-Fourier model. This formulation leads to the emergence of four thermal parameters: lag-time in heat flux τq, lag-time τt in temperature due to interstitial heat transfer coefficient h, and lag-time in the transient response of the temperature gradient τx in the heat flux equation. These parameters account for the microstructural thermal interaction between the fluid and neighboring solid matrix as well as the delay time needed for both phases to approach thermal equilibrium. An experimental verification of the microscale model was performed under standard laboratory conditions. The values of the aforementioned thermal parameters were determined to compute the fluid and solid temperatures. Results predicted from three models (classical Fourier, non-Fourier, and experimental) were compared. It indicates an excellent agreement between the non-Fourier and the experimental model, and a significant deviation of Fourier prediction from the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信