二进位码整形滤波器的设计

Shao-Lun Huang, Y. Blankenship, Lizhong Zheng
{"title":"二进位码整形滤波器的设计","authors":"Shao-Lun Huang, Y. Blankenship, Lizhong Zheng","doi":"10.1109/WCINS.2010.5541727","DOIUrl":null,"url":null,"abstract":"In information theory, in order to maximize the total throughput, it is required that the codebook has an empirical distribution that maximizes the mutual information over the channel. In coding theory, however, most codes we can generate have Bernoulli (1 over 2) distribution. In this paper, we present a new coding scheme to efficiently generate binary codes with different distributions. Our main approach is to first encode the information bits by a linear code C, and then quantized the codeword to the closest codeword in another linear code Cs. The quantization error is then treated as the encoded codeword in our coding scheme. We discuss the practicality and advantage of such codes and give a design example.","PeriodicalId":156036,"journal":{"name":"2010 IEEE International Conference on Wireless Communications, Networking and Information Security","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The design of binary shaping filter of binary code\",\"authors\":\"Shao-Lun Huang, Y. Blankenship, Lizhong Zheng\",\"doi\":\"10.1109/WCINS.2010.5541727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In information theory, in order to maximize the total throughput, it is required that the codebook has an empirical distribution that maximizes the mutual information over the channel. In coding theory, however, most codes we can generate have Bernoulli (1 over 2) distribution. In this paper, we present a new coding scheme to efficiently generate binary codes with different distributions. Our main approach is to first encode the information bits by a linear code C, and then quantized the codeword to the closest codeword in another linear code Cs. The quantization error is then treated as the encoded codeword in our coding scheme. We discuss the practicality and advantage of such codes and give a design example.\",\"PeriodicalId\":156036,\"journal\":{\"name\":\"2010 IEEE International Conference on Wireless Communications, Networking and Information Security\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Wireless Communications, Networking and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCINS.2010.5541727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Wireless Communications, Networking and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCINS.2010.5541727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在信息论中,为了使总吞吐量最大化,要求码本具有使信道上的互信息最大化的经验分布。然而,在编码理论中,我们可以生成的大多数代码都具有伯努利(1 / 2)分布。本文提出了一种新的编码方案,可以有效地生成不同分布的二进制码。我们的主要方法是首先用线性码C对信息位进行编码,然后将码字量化为另一个线性码C中最接近的码字。然后在我们的编码方案中将量化误差作为编码码字处理。讨论了该规范的实用性和优越性,并给出了设计实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The design of binary shaping filter of binary code
In information theory, in order to maximize the total throughput, it is required that the codebook has an empirical distribution that maximizes the mutual information over the channel. In coding theory, however, most codes we can generate have Bernoulli (1 over 2) distribution. In this paper, we present a new coding scheme to efficiently generate binary codes with different distributions. Our main approach is to first encode the information bits by a linear code C, and then quantized the codeword to the closest codeword in another linear code Cs. The quantization error is then treated as the encoded codeword in our coding scheme. We discuss the practicality and advantage of such codes and give a design example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信