在输入的基因表达数据集上识别最重要的基因

Pranoti R. Kamble, Rakhi D. Wajgi, M. Kshirsagar
{"title":"在输入的基因表达数据集上识别最重要的基因","authors":"Pranoti R. Kamble, Rakhi D. Wajgi, M. Kshirsagar","doi":"10.1109/CSNT.2015.187","DOIUrl":null,"url":null,"abstract":"Due to advance research in the field of Microarray technology large amount of gene expressions are generated. These gene dataset helps in getting more insight of cells and their functioning. While capturing gene expressions noise get added in the dataset. For the accuracy of downstream analysis it is necessary to preprocess this data. This helps in accurately identifying most significant and co-expressing genes. In this paper, we have implemented USQR algorithm for data reduction after applying normalization and discretization. We have used serum dataset containing 1700 genes.","PeriodicalId":334733,"journal":{"name":"2015 Fifth International Conference on Communication Systems and Network Technologies","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Most Significant Genes on Imputed Gene Expression Dataset\",\"authors\":\"Pranoti R. Kamble, Rakhi D. Wajgi, M. Kshirsagar\",\"doi\":\"10.1109/CSNT.2015.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to advance research in the field of Microarray technology large amount of gene expressions are generated. These gene dataset helps in getting more insight of cells and their functioning. While capturing gene expressions noise get added in the dataset. For the accuracy of downstream analysis it is necessary to preprocess this data. This helps in accurately identifying most significant and co-expressing genes. In this paper, we have implemented USQR algorithm for data reduction after applying normalization and discretization. We have used serum dataset containing 1700 genes.\",\"PeriodicalId\":334733,\"journal\":{\"name\":\"2015 Fifth International Conference on Communication Systems and Network Technologies\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fifth International Conference on Communication Systems and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNT.2015.187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2015.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于微阵列技术领域的深入研究,产生了大量的基因表达。这些基因数据集有助于更深入地了解细胞及其功能。在捕获基因表达的同时,数据集中也加入了噪声。为了下游分析的准确性,有必要对这些数据进行预处理。这有助于准确地识别最重要的和共同表达的基因。在本文中,我们在应用归一化和离散化后实现了USQR算法的数据约简。我们使用了包含1700个基因的血清数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Most Significant Genes on Imputed Gene Expression Dataset
Due to advance research in the field of Microarray technology large amount of gene expressions are generated. These gene dataset helps in getting more insight of cells and their functioning. While capturing gene expressions noise get added in the dataset. For the accuracy of downstream analysis it is necessary to preprocess this data. This helps in accurately identifying most significant and co-expressing genes. In this paper, we have implemented USQR algorithm for data reduction after applying normalization and discretization. We have used serum dataset containing 1700 genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信