利用纹理和几何特征检测乳房x线照片异常的新技术

Spandana Paramkusham, K. M. Rao, B. V. V. S. N. Rao
{"title":"利用纹理和几何特征检测乳房x线照片异常的新技术","authors":"Spandana Paramkusham, K. M. Rao, B. V. V. S. N. Rao","doi":"10.1109/ICMOCE.2015.7489712","DOIUrl":null,"url":null,"abstract":"The paper investigates on recognition of breast abnormalities. A novel feature frame work was proposed on mammographic patches based on both texture and geometric features for classification of breast tissues into normal, malignant and benign. The methodology comprises of five stages. First step is preprocessing, texture feature extraction using Local quinary pattern for classifying breast tissues into normal and abnormal, Automatic segmentation of mass using k means algorithm, a new geometric feature descriptors extraction to classify them into benign and malignant and two stage classification. Our feature extraction method attained 99.27 for normal and abnormal, 79.41% for benign and malignant and over all accuracy for three class classification is 89.05%.","PeriodicalId":352568,"journal":{"name":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Novel technique for the detection of abnormalities in Mammograms using texture and geometric features\",\"authors\":\"Spandana Paramkusham, K. M. Rao, B. V. V. S. N. Rao\",\"doi\":\"10.1109/ICMOCE.2015.7489712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates on recognition of breast abnormalities. A novel feature frame work was proposed on mammographic patches based on both texture and geometric features for classification of breast tissues into normal, malignant and benign. The methodology comprises of five stages. First step is preprocessing, texture feature extraction using Local quinary pattern for classifying breast tissues into normal and abnormal, Automatic segmentation of mass using k means algorithm, a new geometric feature descriptors extraction to classify them into benign and malignant and two stage classification. Our feature extraction method attained 99.27 for normal and abnormal, 79.41% for benign and malignant and over all accuracy for three class classification is 89.05%.\",\"PeriodicalId\":352568,\"journal\":{\"name\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMOCE.2015.7489712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMOCE.2015.7489712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨乳腺异常的识别方法。提出了一种基于纹理特征和几何特征的乳腺贴片特征框架,用于乳腺组织的正常、恶性和良性分类。该方法包括五个阶段。第一步是预处理,利用局部五元模式提取纹理特征对乳腺组织进行正常和异常分类,利用k均值算法对肿块进行自动分割,利用新的几何特征描述子提取对其进行良性和恶性分类,并进行两阶段分类。我们的特征提取方法对正常和异常的准确率为99.27,对良性和恶性的准确率为79.41%,对三类分类的总体准确率为89.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel technique for the detection of abnormalities in Mammograms using texture and geometric features
The paper investigates on recognition of breast abnormalities. A novel feature frame work was proposed on mammographic patches based on both texture and geometric features for classification of breast tissues into normal, malignant and benign. The methodology comprises of five stages. First step is preprocessing, texture feature extraction using Local quinary pattern for classifying breast tissues into normal and abnormal, Automatic segmentation of mass using k means algorithm, a new geometric feature descriptors extraction to classify them into benign and malignant and two stage classification. Our feature extraction method attained 99.27 for normal and abnormal, 79.41% for benign and malignant and over all accuracy for three class classification is 89.05%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信