基于四元数多项式的任务空间定向规划

M. Shahbazi, Navvab Kashiri, D. Caldwell, N. Tsagarakis
{"title":"基于四元数多项式的任务空间定向规划","authors":"M. Shahbazi, Navvab Kashiri, D. Caldwell, N. Tsagarakis","doi":"10.1109/ROBIO.2017.8324769","DOIUrl":null,"url":null,"abstract":"This paper introduces a computationally fast method for orientation trajectory planning in point-to-point motion tasks when the angular velocity and acceleration at the endpoints are constrained. Addressing such a problem with existing spherical-interpolation-based methods (in the context of unit quaternion) is not straightforward, since the inherent complexities of spherical curves necessitate task-specific tunings for satisfying all the boundary conditions. To tackle such a difficulty, we propound an interpolation function on the basis of standard polynomials in time with quaternion coefficients. We introduce a novel algorithm to determine varying polynomial coefficients in a way that the unit length of interpolated quaternion can be guaranteed. The performance of the developed planning algorithms is illustrated through a functional analysis and via simulation experiments on an anthropomorphic robotic arm. The results corroborate the merits of the presented approach especially in respecting arbitrary boundary conditions.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Orientation planning in task space using quaternion polynomials\",\"authors\":\"M. Shahbazi, Navvab Kashiri, D. Caldwell, N. Tsagarakis\",\"doi\":\"10.1109/ROBIO.2017.8324769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a computationally fast method for orientation trajectory planning in point-to-point motion tasks when the angular velocity and acceleration at the endpoints are constrained. Addressing such a problem with existing spherical-interpolation-based methods (in the context of unit quaternion) is not straightforward, since the inherent complexities of spherical curves necessitate task-specific tunings for satisfying all the boundary conditions. To tackle such a difficulty, we propound an interpolation function on the basis of standard polynomials in time with quaternion coefficients. We introduce a novel algorithm to determine varying polynomial coefficients in a way that the unit length of interpolated quaternion can be guaranteed. The performance of the developed planning algorithms is illustrated through a functional analysis and via simulation experiments on an anthropomorphic robotic arm. The results corroborate the merits of the presented approach especially in respecting arbitrary boundary conditions.\",\"PeriodicalId\":197159,\"journal\":{\"name\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2017.8324769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种点到点运动任务中,当端点处的角速度和加速度有约束时,定位轨迹规划的快速计算方法。用现有的基于球面插值的方法(在单位四元数的背景下)解决这样的问题并不简单,因为球面曲线固有的复杂性需要特定于任务的调优来满足所有的边界条件。为了解决这一难题,我们提出了一个基于四元数系数的标准时间多项式的插值函数。在保证插值四元数单位长度的前提下,提出了一种确定变多项式系数的新算法。通过功能分析和拟人机械臂的仿真实验,说明了所开发的规划算法的性能。结果证实了该方法的优点,特别是在考虑任意边界条件时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orientation planning in task space using quaternion polynomials
This paper introduces a computationally fast method for orientation trajectory planning in point-to-point motion tasks when the angular velocity and acceleration at the endpoints are constrained. Addressing such a problem with existing spherical-interpolation-based methods (in the context of unit quaternion) is not straightforward, since the inherent complexities of spherical curves necessitate task-specific tunings for satisfying all the boundary conditions. To tackle such a difficulty, we propound an interpolation function on the basis of standard polynomials in time with quaternion coefficients. We introduce a novel algorithm to determine varying polynomial coefficients in a way that the unit length of interpolated quaternion can be guaranteed. The performance of the developed planning algorithms is illustrated through a functional analysis and via simulation experiments on an anthropomorphic robotic arm. The results corroborate the merits of the presented approach especially in respecting arbitrary boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信