基于自回归方法和神经网络的经济预测

J. Chen
{"title":"基于自回归方法和神经网络的经济预测","authors":"J. Chen","doi":"10.2139/ssrn.3521532","DOIUrl":null,"url":null,"abstract":"Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Economic Forecasting With Autoregressive Methods and Neural Networks\",\"authors\":\"J. Chen\",\"doi\":\"10.2139/ssrn.3521532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3521532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3521532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经网络可以预测经济数据,其准确性与传统的自回归方法(如SARIMA和VAR)相当。本研究使用密集、循环、卷积和convnet/RNN混合方法对利率、消费者和生产者价格以及劳动力市场数据进行时间序列分析。经过14年的数据训练,神经网络可以做出准确的50年预测。这些预测的差距可能会揭示宏观经济体制的变化。因此,在其他方面准确的神经网络预测中,失败可能会通过无监督机器学习为理论经济假设提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Economic Forecasting With Autoregressive Methods and Neural Networks
Neural networks can forecast economic data with accuracy matching that of conventional autoregressive methods such as SARIMA and VAR. This study uses dense, recurrent, convolutional, and convnet/RNN hybrids to conduct time-series analysis of interest rates, consumer and producer prices, and labor market data. Training on 14 years of data, neural networks produce accurate 50-year forecasts. Gaps in these forecasts may reveal macroeconomic regime changes. Failures in otherwise accurate neural network forecasts may thus inform theoretical economic hypotheses through unsupervised machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信