基于多个ELM的日前电价预测

H. Tian, Bo Meng, Shuzhou Wang
{"title":"基于多个ELM的日前电价预测","authors":"H. Tian, Bo Meng, Shuzhou Wang","doi":"10.1109/CCDC.2010.5499079","DOIUrl":null,"url":null,"abstract":"Aiming at the characters of day-ahead electricity price, an electricity price prediction model is established by combining the intelligent modeling methods. A new neural network method ELM is selected for its better performance to establish the basic day-ahead electricity price prediction model. Using the information fusion and ensemble ideas, a multiple ELM modeling approach is proposed to establish the prediction model. The day-ahead electricity price prediction model is tested by the real data. The experiments demonstrate that the new prediction model established by the new method has better performance.","PeriodicalId":227938,"journal":{"name":"2010 Chinese Control and Decision Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Day-ahead electricity price prediction based on multiple ELM\",\"authors\":\"H. Tian, Bo Meng, Shuzhou Wang\",\"doi\":\"10.1109/CCDC.2010.5499079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the characters of day-ahead electricity price, an electricity price prediction model is established by combining the intelligent modeling methods. A new neural network method ELM is selected for its better performance to establish the basic day-ahead electricity price prediction model. Using the information fusion and ensemble ideas, a multiple ELM modeling approach is proposed to establish the prediction model. The day-ahead electricity price prediction model is tested by the real data. The experiments demonstrate that the new prediction model established by the new method has better performance.\",\"PeriodicalId\":227938,\"journal\":{\"name\":\"2010 Chinese Control and Decision Conference\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2010.5499079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2010.5499079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对日前电价的特点,结合智能建模方法,建立了电价预测模型。选取了一种性能较好的神经网络方法ELM来建立基本日前电价预测模型。利用信息融合和集成思想,提出了一种多ELM建模方法来建立预测模型。通过实际数据对日前电价预测模型进行了验证。实验表明,新方法建立的预测模型具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Day-ahead electricity price prediction based on multiple ELM
Aiming at the characters of day-ahead electricity price, an electricity price prediction model is established by combining the intelligent modeling methods. A new neural network method ELM is selected for its better performance to establish the basic day-ahead electricity price prediction model. Using the information fusion and ensemble ideas, a multiple ELM modeling approach is proposed to establish the prediction model. The day-ahead electricity price prediction model is tested by the real data. The experiments demonstrate that the new prediction model established by the new method has better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信