模拟输入双输出CNNNUM芯片在机械振动系统瞬态分析中的应用

P. Szolgay, I. Salvi, Z. Szolgay
{"title":"模拟输入双输出CNNNUM芯片在机械振动系统瞬态分析中的应用","authors":"P. Szolgay, I. Salvi, Z. Szolgay","doi":"10.1109/INES.1997.632426","DOIUrl":null,"url":null,"abstract":"The large computing power of the cellular neural networks (CNNs) is used here to compute the transient response of a mechanical vibrating system. A basic question is how a mechanical system can be decomposed into homogeneous parts, avoiding the rise of space variant templates which can not be implemented on current analog CNN universal machine (CNNUM) chips. A computational complexity to time transformation is proposed in this paper.","PeriodicalId":161975,"journal":{"name":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Toward the application of an analog input dual output CNNNUM chip in transient analysis of mechanical vibrating systems\",\"authors\":\"P. Szolgay, I. Salvi, Z. Szolgay\",\"doi\":\"10.1109/INES.1997.632426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large computing power of the cellular neural networks (CNNs) is used here to compute the transient response of a mechanical vibrating system. A basic question is how a mechanical system can be decomposed into homogeneous parts, avoiding the rise of space variant templates which can not be implemented on current analog CNN universal machine (CNNUM) chips. A computational complexity to time transformation is proposed in this paper.\",\"PeriodicalId\":161975,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.1997.632426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.1997.632426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文利用细胞神经网络(cnn)强大的计算能力来计算机械振动系统的瞬态响应。一个基本问题是如何将机械系统分解为同质部件,以避免在当前模拟CNN通用机(CNNUM)芯片上无法实现的空间变体模板的出现。本文提出了时间变换的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward the application of an analog input dual output CNNNUM chip in transient analysis of mechanical vibrating systems
The large computing power of the cellular neural networks (CNNs) is used here to compute the transient response of a mechanical vibrating system. A basic question is how a mechanical system can be decomposed into homogeneous parts, avoiding the rise of space variant templates which can not be implemented on current analog CNN universal machine (CNNUM) chips. A computational complexity to time transformation is proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信