Ruiyun Fu, A. Grekov, E. Santi, J. Hudgins, A. Mantooth
{"title":"考虑JFET区域非均匀电流分布的功率SiC DMOSFET模型","authors":"Ruiyun Fu, A. Grekov, E. Santi, J. Hudgins, A. Mantooth","doi":"10.1109/ECCE.2010.5617830","DOIUrl":null,"url":null,"abstract":"The main goal of this work is development of a new circuit-based SiC DMOSFET model which physically represents the mechanism of current saturation in power SiC DMOSFET. Finite element simulations show that current saturation for a typical device geometry is due to two-dimensional carrier distribution effects in the JFET region caused by the current spreading from the channel to the JFET region. For high drain-source voltages, most of the voltage-drop occurs in the current-spreading region located in the JFET region close to the channel.","PeriodicalId":161915,"journal":{"name":"2010 IEEE Energy Conversion Congress and Exposition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power SiC DMOSFET model accounting for JFET region nonuniform current distribution\",\"authors\":\"Ruiyun Fu, A. Grekov, E. Santi, J. Hudgins, A. Mantooth\",\"doi\":\"10.1109/ECCE.2010.5617830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this work is development of a new circuit-based SiC DMOSFET model which physically represents the mechanism of current saturation in power SiC DMOSFET. Finite element simulations show that current saturation for a typical device geometry is due to two-dimensional carrier distribution effects in the JFET region caused by the current spreading from the channel to the JFET region. For high drain-source voltages, most of the voltage-drop occurs in the current-spreading region located in the JFET region close to the channel.\",\"PeriodicalId\":161915,\"journal\":{\"name\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2010.5617830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Energy Conversion Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2010.5617830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power SiC DMOSFET model accounting for JFET region nonuniform current distribution
The main goal of this work is development of a new circuit-based SiC DMOSFET model which physically represents the mechanism of current saturation in power SiC DMOSFET. Finite element simulations show that current saturation for a typical device geometry is due to two-dimensional carrier distribution effects in the JFET region caused by the current spreading from the channel to the JFET region. For high drain-source voltages, most of the voltage-drop occurs in the current-spreading region located in the JFET region close to the channel.