使用卷积神经网络从自然图像中区分计算机图形

Nicolas Rahmouni, Vincent Nozick, J. Yamagishi, I. Echizen
{"title":"使用卷积神经网络从自然图像中区分计算机图形","authors":"Nicolas Rahmouni, Vincent Nozick, J. Yamagishi, I. Echizen","doi":"10.1109/WIFS.2017.8267647","DOIUrl":null,"url":null,"abstract":"This paper presents a deep-learning method for distinguishing computer generated graphics from real photographic images. The proposed method uses a Convolutional Neural Network (CNN) with a custom pooling layer to optimize current best-performing algorithms feature extraction scheme. Local estimates of class probabilities are computed and aggregated to predict the label of the whole picture. We evaluate our work on recent photo-realistic computer graphics and show that it outperforms state of the art methods for both local and full image classification.","PeriodicalId":305837,"journal":{"name":"2017 IEEE Workshop on Information Forensics and Security (WIFS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"234","resultStr":"{\"title\":\"Distinguishing computer graphics from natural images using convolution neural networks\",\"authors\":\"Nicolas Rahmouni, Vincent Nozick, J. Yamagishi, I. Echizen\",\"doi\":\"10.1109/WIFS.2017.8267647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep-learning method for distinguishing computer generated graphics from real photographic images. The proposed method uses a Convolutional Neural Network (CNN) with a custom pooling layer to optimize current best-performing algorithms feature extraction scheme. Local estimates of class probabilities are computed and aggregated to predict the label of the whole picture. We evaluate our work on recent photo-realistic computer graphics and show that it outperforms state of the art methods for both local and full image classification.\",\"PeriodicalId\":305837,\"journal\":{\"name\":\"2017 IEEE Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"234\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2017.8267647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2017.8267647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 234

摘要

本文提出了一种区分计算机生成图形和真实摄影图像的深度学习方法。该方法采用卷积神经网络(CNN)自定义池化层,对当前性能最好的特征提取算法进行优化。计算和汇总类概率的局部估计,以预测整个图像的标签。我们评估了我们在最近的逼真计算机图形学上的工作,并表明它在局部和完整图像分类方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinguishing computer graphics from natural images using convolution neural networks
This paper presents a deep-learning method for distinguishing computer generated graphics from real photographic images. The proposed method uses a Convolutional Neural Network (CNN) with a custom pooling layer to optimize current best-performing algorithms feature extraction scheme. Local estimates of class probabilities are computed and aggregated to predict the label of the whole picture. We evaluate our work on recent photo-realistic computer graphics and show that it outperforms state of the art methods for both local and full image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信