评估Twitter文本信息对基于图的推荐的贡献

Evgenia Wasserman Pritsker, T. Kuflik, Einat Minkov
{"title":"评估Twitter文本信息对基于图的推荐的贡献","authors":"Evgenia Wasserman Pritsker, T. Kuflik, Einat Minkov","doi":"10.1145/3025171.3025218","DOIUrl":null,"url":null,"abstract":"Graph-based recommendation approaches can model associations between users and items alongside additional contextual information. Recent studies demonstrated that representing features extracted from social media (SM) auxiliary data, like friendships, jointly with traditional users/items ratings in the graph, contribute to recommendation accuracy. In this work, we take a step further and propose an extended graph representation that includes socio-demographic and personal traits extracted from the content posted by the user on SM. Empirical results demonstrate that processing unstructured textual information collected from Twitter and representing it in structured form in the graph improves recommendation performance, especially in cold start conditions.","PeriodicalId":166632,"journal":{"name":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Assessing the Contribution of Twitter's Textual Information to Graph-based Recommendation\",\"authors\":\"Evgenia Wasserman Pritsker, T. Kuflik, Einat Minkov\",\"doi\":\"10.1145/3025171.3025218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph-based recommendation approaches can model associations between users and items alongside additional contextual information. Recent studies demonstrated that representing features extracted from social media (SM) auxiliary data, like friendships, jointly with traditional users/items ratings in the graph, contribute to recommendation accuracy. In this work, we take a step further and propose an extended graph representation that includes socio-demographic and personal traits extracted from the content posted by the user on SM. Empirical results demonstrate that processing unstructured textual information collected from Twitter and representing it in structured form in the graph improves recommendation performance, especially in cold start conditions.\",\"PeriodicalId\":166632,\"journal\":{\"name\":\"Proceedings of the 22nd International Conference on Intelligent User Interfaces\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3025171.3025218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3025171.3025218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

基于图的推荐方法可以为用户和项目之间的关联以及其他上下文信息建模。最近的研究表明,从社交媒体(SM)辅助数据中提取的特征(如友谊)与图中的传统用户/项目评分相结合,有助于提高推荐的准确性。在这项工作中,我们进一步提出了一个扩展的图形表示,其中包括从用户在SM上发布的内容中提取的社会人口统计学和个人特征。实证结果表明,处理从Twitter收集的非结构化文本信息并将其以结构化形式表示在图中可以提高推荐性能,特别是在冷启动条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Contribution of Twitter's Textual Information to Graph-based Recommendation
Graph-based recommendation approaches can model associations between users and items alongside additional contextual information. Recent studies demonstrated that representing features extracted from social media (SM) auxiliary data, like friendships, jointly with traditional users/items ratings in the graph, contribute to recommendation accuracy. In this work, we take a step further and propose an extended graph representation that includes socio-demographic and personal traits extracted from the content posted by the user on SM. Empirical results demonstrate that processing unstructured textual information collected from Twitter and representing it in structured form in the graph improves recommendation performance, especially in cold start conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信