基于内容的图像分类与检索二元分类器集体网络的增量进化

S. Kiranyaz, Stefan Uhlmann, Jenni Raitoharju, T. Ince, M. Gabbouj
{"title":"基于内容的图像分类与检索二元分类器集体网络的增量进化","authors":"S. Kiranyaz, Stefan Uhlmann, Jenni Raitoharju, T. Ince, M. Gabbouj","doi":"10.1109/INNOVATIONS.2011.5893823","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an incremental evolution scheme within collective network of (evolutionary) binary classifiers (CNBC) framework to address the problem of incremental learning and to achieve a high retrieval performance for content-based image retrieval (CBIR). The proposed CNBC framework can still function even though the training (ground truth) data may not be entirely present from the beginning and thus the system can only be evolved incrementally. The CNBC framework basically adopts a “Divide and Conquer” type approach by allocating several networks of binary classifiers (NBCs) to discriminate each class and performs evolutionary search to find the optimal binary classifier (BC) in each NBC. This design further allows such scalability that the CNBC can dynamically adapt its internal topology to new features and classes with minimal effort. Both visual and numerical performance evaluations of the proposed framework over benchmark image databases demonstrate its efficiency and accuracy for scalable CBIR and classification.","PeriodicalId":173102,"journal":{"name":"2011 International Conference on Innovations in Information Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental evolution of collective network of binary classifier for content-based image classification and retrieval\",\"authors\":\"S. Kiranyaz, Stefan Uhlmann, Jenni Raitoharju, T. Ince, M. Gabbouj\",\"doi\":\"10.1109/INNOVATIONS.2011.5893823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an incremental evolution scheme within collective network of (evolutionary) binary classifiers (CNBC) framework to address the problem of incremental learning and to achieve a high retrieval performance for content-based image retrieval (CBIR). The proposed CNBC framework can still function even though the training (ground truth) data may not be entirely present from the beginning and thus the system can only be evolved incrementally. The CNBC framework basically adopts a “Divide and Conquer” type approach by allocating several networks of binary classifiers (NBCs) to discriminate each class and performs evolutionary search to find the optimal binary classifier (BC) in each NBC. This design further allows such scalability that the CNBC can dynamically adapt its internal topology to new features and classes with minimal effort. Both visual and numerical performance evaluations of the proposed framework over benchmark image databases demonstrate its efficiency and accuracy for scalable CBIR and classification.\",\"PeriodicalId\":173102,\"journal\":{\"name\":\"2011 International Conference on Innovations in Information Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Innovations in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INNOVATIONS.2011.5893823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Innovations in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2011.5893823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于(进化)二元分类器集体网络(CNBC)框架的增量进化方案,以解决增量学习问题并实现基于内容的图像检索(CBIR)的高检索性能。提议的CNBC框架仍然可以运行,即使训练(基础事实)数据可能从一开始就不完全存在,因此系统只能逐步发展。CNBC框架基本上采用“分而治之”式的方法,通过分配多个二元分类器(NBC)网络来区分每个类,并在每个NBC中进行进化搜索以找到最优的二元分类器(BC)。这种设计进一步允许这样的可扩展性,CNBC可以以最小的努力动态地调整其内部拓扑以适应新的特性和类。在基准图像数据库上对所提出的框架进行了视觉和数值性能评估,证明了该框架在可扩展的CBIR和分类方面的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental evolution of collective network of binary classifier for content-based image classification and retrieval
In this paper, we propose an incremental evolution scheme within collective network of (evolutionary) binary classifiers (CNBC) framework to address the problem of incremental learning and to achieve a high retrieval performance for content-based image retrieval (CBIR). The proposed CNBC framework can still function even though the training (ground truth) data may not be entirely present from the beginning and thus the system can only be evolved incrementally. The CNBC framework basically adopts a “Divide and Conquer” type approach by allocating several networks of binary classifiers (NBCs) to discriminate each class and performs evolutionary search to find the optimal binary classifier (BC) in each NBC. This design further allows such scalability that the CNBC can dynamically adapt its internal topology to new features and classes with minimal effort. Both visual and numerical performance evaluations of the proposed framework over benchmark image databases demonstrate its efficiency and accuracy for scalable CBIR and classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信