Y. Urabe, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda
{"title":"编辑后最长的林登子串","authors":"Y. Urabe, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda","doi":"10.4230/LIPIcs.CPM.2018.19","DOIUrl":null,"url":null,"abstract":"The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T') where T' is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(l log sigma + log n) time for any block edit where sigma is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T' for both problems.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Longest Lyndon Substring After Edit\",\"authors\":\"Y. Urabe, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda\",\"doi\":\"10.4230/LIPIcs.CPM.2018.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T') where T' is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(l log sigma + log n) time for any block edit where sigma is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T' for both problems.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2018.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2018.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The longest Lyndon substring of a string T is the longest substring of T which is a Lyndon word. LLS(T) denotes the length of the longest Lyndon substring of a string T. In this paper, we consider computing LLS(T') where T' is an edited string formed from T. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(log n) time for any single character edit. We also consider a version of the problem with block edits, i.e., a substring of T is replaced by a given string of length l. After O(n) time and space preprocessing, our algorithm returns LLS(T') in O(l log sigma + log n) time for any block edit where sigma is the number of distinct characters in T. We can modify our algorithm so as to output all the longest Lyndon substrings of T' for both problems.