基于化学计量学的TLC和GC-MS用于小分子分析:实用指南

J. Vázquez-Martínez, Mercedes G. López
{"title":"基于化学计量学的TLC和GC-MS用于小分子分析:实用指南","authors":"J. Vázquez-Martínez, Mercedes G. López","doi":"10.5772/INTECHOPEN.77160","DOIUrl":null,"url":null,"abstract":"Nowadays, thin-layer chromatography (TLC) and gas chromatography/mass spectrom- etry (GC-MS) instruments can produce more data than even before. At this point, the use of mathematical and statistical tools has provided the key to resolve the information overload. In this chapter, a practical guide is provided for the TLC and GC-MS analysis of short-chain fatty acids (SCFAs), amino acids, and monosaccharides. A methodology for extracting and transforming the chromatographic data to a suitable format for chemometrics is described. Furthermore, a procedure for chemometric analysis based on principal components analysis and clustering analysis is suggested.","PeriodicalId":309932,"journal":{"name":"Chemometrics and Data Analysis in Chromatography","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Chemometrics-Based TLC and GC-MS for Small Molecule Analysis: A Practical Guide\",\"authors\":\"J. Vázquez-Martínez, Mercedes G. López\",\"doi\":\"10.5772/INTECHOPEN.77160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, thin-layer chromatography (TLC) and gas chromatography/mass spectrom- etry (GC-MS) instruments can produce more data than even before. At this point, the use of mathematical and statistical tools has provided the key to resolve the information overload. In this chapter, a practical guide is provided for the TLC and GC-MS analysis of short-chain fatty acids (SCFAs), amino acids, and monosaccharides. A methodology for extracting and transforming the chromatographic data to a suitable format for chemometrics is described. Furthermore, a procedure for chemometric analysis based on principal components analysis and clustering analysis is suggested.\",\"PeriodicalId\":309932,\"journal\":{\"name\":\"Chemometrics and Data Analysis in Chromatography\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Data Analysis in Chromatography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.77160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Data Analysis in Chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.77160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

如今,薄层色谱(TLC)和气相色谱/质谱(GC-MS)仪器可以产生比以前更多的数据。在这一点上,数学和统计工具的使用为解决信息过载提供了关键。本章提供了短链脂肪酸(SCFAs)、氨基酸和单糖的TLC和GC-MS分析的实用指南。描述了一种提取和转换色谱数据到适合化学计量学格式的方法。在此基础上,提出了基于主成分分析和聚类分析的化学计量分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemometrics-Based TLC and GC-MS for Small Molecule Analysis: A Practical Guide
Nowadays, thin-layer chromatography (TLC) and gas chromatography/mass spectrom- etry (GC-MS) instruments can produce more data than even before. At this point, the use of mathematical and statistical tools has provided the key to resolve the information overload. In this chapter, a practical guide is provided for the TLC and GC-MS analysis of short-chain fatty acids (SCFAs), amino acids, and monosaccharides. A methodology for extracting and transforming the chromatographic data to a suitable format for chemometrics is described. Furthermore, a procedure for chemometric analysis based on principal components analysis and clustering analysis is suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信