短沟道mosfet漏极势垒降低(DIBL)的二维解析模型

A. Mutlu, M. Rahman
{"title":"短沟道mosfet漏极势垒降低(DIBL)的二维解析模型","authors":"A. Mutlu, M. Rahman","doi":"10.1109/SECON.2000.845589","DOIUrl":null,"url":null,"abstract":"An analytical model to elucidate various effects of drain induced barrier lowering in a short channel MOSFET's performance is presented. In particular, the amount of drain bias induced depletion charge under the gate is assessed and an expression for the distribution of this charge along the channel length is developed. Then, based on a simplified two-dimensional solution of Poisson's equation along the channel, the potential barrier lowering between source and channel, and consequently threshold voltage shift is estimated. The results are compared with numerical simulation data for deep submicron NMOS devices. Finally, the dependence of threshold voltage on drain bias for LDD and non-LDD MOSFETs with effective channel lengths down to deep submicron range has been investigated. Due to its simplicity, the developed model is suitable for circuit simulators.","PeriodicalId":206022,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Two-dimensional analytical model for drain induced barrier lowering (DIBL) in short channel MOSFETs\",\"authors\":\"A. Mutlu, M. Rahman\",\"doi\":\"10.1109/SECON.2000.845589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical model to elucidate various effects of drain induced barrier lowering in a short channel MOSFET's performance is presented. In particular, the amount of drain bias induced depletion charge under the gate is assessed and an expression for the distribution of this charge along the channel length is developed. Then, based on a simplified two-dimensional solution of Poisson's equation along the channel, the potential barrier lowering between source and channel, and consequently threshold voltage shift is estimated. The results are compared with numerical simulation data for deep submicron NMOS devices. Finally, the dependence of threshold voltage on drain bias for LDD and non-LDD MOSFETs with effective channel lengths down to deep submicron range has been investigated. Due to its simplicity, the developed model is suitable for circuit simulators.\",\"PeriodicalId\":206022,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2000.845589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2000.845589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文建立了一个解析模型来解释漏极势垒降低对短沟道MOSFET性能的各种影响。特别地,评估了栅极下漏极偏压引起的耗尽电荷的量,并开发了该电荷沿通道长度分布的表达式。然后,基于沿通道的泊松方程的二维简化解,估计了源和通道之间的势垒降低以及由此产生的阈值电压偏移。结果与深亚微米NMOS器件的数值模拟数据进行了比较。最后,研究了有效沟道长度在深亚微米范围内的LDD和非LDD mosfet的阈值电压对漏极偏置的依赖性。该模型简单,适用于电路仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional analytical model for drain induced barrier lowering (DIBL) in short channel MOSFETs
An analytical model to elucidate various effects of drain induced barrier lowering in a short channel MOSFET's performance is presented. In particular, the amount of drain bias induced depletion charge under the gate is assessed and an expression for the distribution of this charge along the channel length is developed. Then, based on a simplified two-dimensional solution of Poisson's equation along the channel, the potential barrier lowering between source and channel, and consequently threshold voltage shift is estimated. The results are compared with numerical simulation data for deep submicron NMOS devices. Finally, the dependence of threshold voltage on drain bias for LDD and non-LDD MOSFETs with effective channel lengths down to deep submicron range has been investigated. Due to its simplicity, the developed model is suitable for circuit simulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信