在Graal中构建特定领域编译插件的经验

Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, N. Foutris, M. Luján
{"title":"在Graal中构建特定领域编译插件的经验","authors":"Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, N. Foutris, M. Luján","doi":"10.1145/3132190.3132207","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our experiences in co-designing a domain-specific compilation stack. Our motivation stems from the missed optimization opportunities we observed while implementing a computer vision library in Java. To tackle the performance shortcomings, we developed Indigo, a computer vision API co-designed with a compilation plugin for optimizing computer vision applications. Indigo exploits the extensible nature of the Graal compiler which provides invocation plugins, that replace methods with dedicated nodes, and generates machine code compatible with both the Java Virtual Machine (JVM) and the SIMD hardware unit. Our approach improves performance by up to 66.75× when compared to pure Java implementations and by up to 2.75× when compared to the original C++ implementation. These performance improvements are the result of low-level concurrency, idiomatic implementation of algorithms, and by keeping temporary objects in the wider vector unit registers.","PeriodicalId":157584,"journal":{"name":"Proceedings of the 14th International Conference on Managed Languages and Runtimes","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experiences with Building Domain-Specific Compilation Plugins in Graal\",\"authors\":\"Colin Barrett, Christos Kotselidis, Foivos S. Zakkak, N. Foutris, M. Luján\",\"doi\":\"10.1145/3132190.3132207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our experiences in co-designing a domain-specific compilation stack. Our motivation stems from the missed optimization opportunities we observed while implementing a computer vision library in Java. To tackle the performance shortcomings, we developed Indigo, a computer vision API co-designed with a compilation plugin for optimizing computer vision applications. Indigo exploits the extensible nature of the Graal compiler which provides invocation plugins, that replace methods with dedicated nodes, and generates machine code compatible with both the Java Virtual Machine (JVM) and the SIMD hardware unit. Our approach improves performance by up to 66.75× when compared to pure Java implementations and by up to 2.75× when compared to the original C++ implementation. These performance improvements are the result of low-level concurrency, idiomatic implementation of algorithms, and by keeping temporary objects in the wider vector unit registers.\",\"PeriodicalId\":157584,\"journal\":{\"name\":\"Proceedings of the 14th International Conference on Managed Languages and Runtimes\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th International Conference on Managed Languages and Runtimes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132190.3132207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Managed Languages and Runtimes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132190.3132207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们描述了我们在共同设计特定于领域的编译堆栈方面的经验。我们的动机源于我们在Java中实现计算机视觉库时观察到的错失的优化机会。为了解决性能缺陷,我们开发了Indigo,这是一个与编译插件共同设计的计算机视觉API,用于优化计算机视觉应用程序。Indigo利用了Graal编译器的可扩展特性,它提供调用插件,用专用节点替换方法,并生成与Java虚拟机(JVM)和SIMD硬件单元兼容的机器码。与纯Java实现相比,我们的方法将性能提高了66.75倍,与原始c++实现相比,性能提高了2.75倍。这些性能改进是低级并发性、惯用的算法实现以及在更宽的向量单元寄存器中保留临时对象的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiences with Building Domain-Specific Compilation Plugins in Graal
In this paper, we describe our experiences in co-designing a domain-specific compilation stack. Our motivation stems from the missed optimization opportunities we observed while implementing a computer vision library in Java. To tackle the performance shortcomings, we developed Indigo, a computer vision API co-designed with a compilation plugin for optimizing computer vision applications. Indigo exploits the extensible nature of the Graal compiler which provides invocation plugins, that replace methods with dedicated nodes, and generates machine code compatible with both the Java Virtual Machine (JVM) and the SIMD hardware unit. Our approach improves performance by up to 66.75× when compared to pure Java implementations and by up to 2.75× when compared to the original C++ implementation. These performance improvements are the result of low-level concurrency, idiomatic implementation of algorithms, and by keeping temporary objects in the wider vector unit registers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信