高信号频率下的收缩阻力

J. Lavers, R. Timsit
{"title":"高信号频率下的收缩阻力","authors":"J. Lavers, R. Timsit","doi":"10.1109/HOLM.2001.953206","DOIUrl":null,"url":null,"abstract":"Constriction resistance arises in practical electrical interfaces because contact is made at discrete spots as defined by the surface roughness and contact pressure. This paper describes the dependence of constriction resistance on signal frequency. This dependence was calculated for circular constrictions ranging in diameter from 10 to 100 /spl mu/m, and for frequencies ranging from DC to 1 GHz. The results indicate that the magnitude of constriction resistance does not deviate appreciably from values predicted by Helm's classical analytical expression, as long as the skin depth is large compared with the constriction radius. For skin depths that are much smaller than the constriction radius, constriction resistance decreases with increasing frequency to an apparent limiting value independent of the constriction radius. At high frequencies, constriction resistance constitutes only one of two components of the total connection resistance measured in practice. The second component of connection resistance is determined by details of the geometry and dimensions of the contact interface, and increases with signal frequency.","PeriodicalId":136044,"journal":{"name":"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Constriction resistance at high signal frequencies\",\"authors\":\"J. Lavers, R. Timsit\",\"doi\":\"10.1109/HOLM.2001.953206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constriction resistance arises in practical electrical interfaces because contact is made at discrete spots as defined by the surface roughness and contact pressure. This paper describes the dependence of constriction resistance on signal frequency. This dependence was calculated for circular constrictions ranging in diameter from 10 to 100 /spl mu/m, and for frequencies ranging from DC to 1 GHz. The results indicate that the magnitude of constriction resistance does not deviate appreciably from values predicted by Helm's classical analytical expression, as long as the skin depth is large compared with the constriction radius. For skin depths that are much smaller than the constriction radius, constriction resistance decreases with increasing frequency to an apparent limiting value independent of the constriction radius. At high frequencies, constriction resistance constitutes only one of two components of the total connection resistance measured in practice. The second component of connection resistance is determined by details of the geometry and dimensions of the contact interface, and increases with signal frequency.\",\"PeriodicalId\":136044,\"journal\":{\"name\":\"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOLM.2001.953206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts (IEEE Cat. No.01CH37192)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2001.953206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

在实际的电界面中,由于接触是在由表面粗糙度和接触压力确定的离散点上进行的,因此会产生收缩阻力。本文描述了收缩阻力与信号频率的关系。这种相关性是在直径从10到100 /spl mu/m,频率从DC到1ghz的圆形收缩范围内计算的。结果表明,只要皮肤深度比收缩半径大,收缩阻力的大小就不会明显偏离Helm经典解析表达式的预测值。对于远小于收缩半径的皮肤深度,收缩阻力随频率的增加而减小,直至与收缩半径无关的明显极限值。在高频率下,收缩电阻仅构成实际测量的总连接电阻的两个组成部分中的一个。连接电阻的第二分量是由接触界面的几何形状和尺寸的细节决定的,并随着信号频率的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constriction resistance at high signal frequencies
Constriction resistance arises in practical electrical interfaces because contact is made at discrete spots as defined by the surface roughness and contact pressure. This paper describes the dependence of constriction resistance on signal frequency. This dependence was calculated for circular constrictions ranging in diameter from 10 to 100 /spl mu/m, and for frequencies ranging from DC to 1 GHz. The results indicate that the magnitude of constriction resistance does not deviate appreciably from values predicted by Helm's classical analytical expression, as long as the skin depth is large compared with the constriction radius. For skin depths that are much smaller than the constriction radius, constriction resistance decreases with increasing frequency to an apparent limiting value independent of the constriction radius. At high frequencies, constriction resistance constitutes only one of two components of the total connection resistance measured in practice. The second component of connection resistance is determined by details of the geometry and dimensions of the contact interface, and increases with signal frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信