基于拓扑的mser仿射不变描述符

Chenbo Shi, Guijin Wang, Xinggang Lin, Yongming Wang, Chao Liao, Quan Miao
{"title":"基于拓扑的mser仿射不变描述符","authors":"Chenbo Shi, Guijin Wang, Xinggang Lin, Yongming Wang, Chao Liao, Quan Miao","doi":"10.1109/ICIP.2010.5653145","DOIUrl":null,"url":null,"abstract":"This paper introduces a topology based affine invariant descriptor for maximally stable extremal regions (MSERs). The popular SIFT descriptor computes the texture information on a grey-scale patch. Instead our descriptor use only the topology and geometric information among MSERs so that features can be rapidly matched regardless of the texture in the image patch. Based on the ellipses fitting for the detected MSERs, geometric affine invariants between ellipses pair are extracted as the descriptors. Finally topology based voting selector is designed to achieve the best correspondences. Experiment shows that our descriptor is not only computational faster than SIFT descriptor, but also has better performance on wide angle of view and nonlinear illumination change. In addition, our descriptor shows a good result on multi sensor images registration.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Topology based affine invariant descriptor for MSERs\",\"authors\":\"Chenbo Shi, Guijin Wang, Xinggang Lin, Yongming Wang, Chao Liao, Quan Miao\",\"doi\":\"10.1109/ICIP.2010.5653145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a topology based affine invariant descriptor for maximally stable extremal regions (MSERs). The popular SIFT descriptor computes the texture information on a grey-scale patch. Instead our descriptor use only the topology and geometric information among MSERs so that features can be rapidly matched regardless of the texture in the image patch. Based on the ellipses fitting for the detected MSERs, geometric affine invariants between ellipses pair are extracted as the descriptors. Finally topology based voting selector is designed to achieve the best correspondences. Experiment shows that our descriptor is not only computational faster than SIFT descriptor, but also has better performance on wide angle of view and nonlinear illumination change. In addition, our descriptor shows a good result on multi sensor images registration.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5653145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5653145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于拓扑的最大稳定极区仿射不变描述子。流行的SIFT描述符计算灰度patch上的纹理信息。相反,我们的描述符只使用mser之间的拓扑和几何信息,因此无论图像补丁中的纹理如何,特征都可以快速匹配。在椭圆拟合的基础上,提取椭圆对之间的几何仿射不变量作为描述符。最后设计了基于拓扑的投票选择器,以达到最佳对应。实验表明,该描述子不仅计算速度快于SIFT描述子,而且在广角视角和非线性光照变化方面具有更好的性能。此外,该描述符在多传感器图像配准上也显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology based affine invariant descriptor for MSERs
This paper introduces a topology based affine invariant descriptor for maximally stable extremal regions (MSERs). The popular SIFT descriptor computes the texture information on a grey-scale patch. Instead our descriptor use only the topology and geometric information among MSERs so that features can be rapidly matched regardless of the texture in the image patch. Based on the ellipses fitting for the detected MSERs, geometric affine invariants between ellipses pair are extracted as the descriptors. Finally topology based voting selector is designed to achieve the best correspondences. Experiment shows that our descriptor is not only computational faster than SIFT descriptor, but also has better performance on wide angle of view and nonlinear illumination change. In addition, our descriptor shows a good result on multi sensor images registration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信