仿生操纵针的自适应路径跟踪控制

R. Secoli, F. Baena
{"title":"仿生操纵针的自适应路径跟踪控制","authors":"R. Secoli, F. Baena","doi":"10.1109/BIOROB.2016.7523603","DOIUrl":null,"url":null,"abstract":"Needle steering systems have shown potential advantages in minimally invasive surgery in soft-tissue due to their ability to reach deep-seated targets while avoiding obstacles. In general, the control strategies employed to drive the insertion use simplified kinematic models, providing limited control of the trajectory between an entry site and a deep seated target in cases of unmodelled tissue-needle dynamics. In this work, we present the first Adaptive Path-Following (APF) controller for a bio-inspired multi-part needle, able to steer along three-dimensional (3D) paths within a compliant medium by means of the cyclical motion of interlocked segments and without the need for duty-cycle spinning along the insertion axis. The control strategy is outlined in two parts: a high-level controller, which provides driving commands to follow a predefined 3D path smoothly; and a low-level controller, able to counteract unmodelled tissue-needle nonlinearities and kinematic model uncertainties. A simulation that mimics the needle's mechanical behavior during insertion is achieved by using an Experimental Fitting Model (EFM), obtained from previous experimental trials. The Simulation results demonstrate the robustness and adaptability of the proposed control strategy.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Adaptive path-following control for bio-inspired steerable needles\",\"authors\":\"R. Secoli, F. Baena\",\"doi\":\"10.1109/BIOROB.2016.7523603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Needle steering systems have shown potential advantages in minimally invasive surgery in soft-tissue due to their ability to reach deep-seated targets while avoiding obstacles. In general, the control strategies employed to drive the insertion use simplified kinematic models, providing limited control of the trajectory between an entry site and a deep seated target in cases of unmodelled tissue-needle dynamics. In this work, we present the first Adaptive Path-Following (APF) controller for a bio-inspired multi-part needle, able to steer along three-dimensional (3D) paths within a compliant medium by means of the cyclical motion of interlocked segments and without the need for duty-cycle spinning along the insertion axis. The control strategy is outlined in two parts: a high-level controller, which provides driving commands to follow a predefined 3D path smoothly; and a low-level controller, able to counteract unmodelled tissue-needle nonlinearities and kinematic model uncertainties. A simulation that mimics the needle's mechanical behavior during insertion is achieved by using an Experimental Fitting Model (EFM), obtained from previous experimental trials. The Simulation results demonstrate the robustness and adaptability of the proposed control strategy.\",\"PeriodicalId\":235222,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2016.7523603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

针导向系统在软组织微创手术中显示出潜在的优势,因为它们能够在避开障碍物的同时到达深层目标。一般来说,用于驱动插入的控制策略使用简化的运动学模型,在未建模的组织针动力学情况下,对进入点和深层目标之间的轨迹提供有限的控制。在这项工作中,我们提出了第一个用于仿生多部分针的自适应路径跟踪(APF)控制器,能够通过联锁部分的循环运动在兼容介质中沿着三维(3D)路径引导,而无需沿插入轴进行占空比旋转。控制策略分为两部分:高级控制器,提供驱动命令以平滑地遵循预定义的3D路径;和一个低级控制器,能够抵消未建模的组织针非线性和运动学模型的不确定性。通过使用实验拟合模型(EFM)来模拟针头在插入过程中的机械行为,该模型是由先前的实验试验获得的。仿真结果表明该控制策略具有较好的鲁棒性和自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive path-following control for bio-inspired steerable needles
Needle steering systems have shown potential advantages in minimally invasive surgery in soft-tissue due to their ability to reach deep-seated targets while avoiding obstacles. In general, the control strategies employed to drive the insertion use simplified kinematic models, providing limited control of the trajectory between an entry site and a deep seated target in cases of unmodelled tissue-needle dynamics. In this work, we present the first Adaptive Path-Following (APF) controller for a bio-inspired multi-part needle, able to steer along three-dimensional (3D) paths within a compliant medium by means of the cyclical motion of interlocked segments and without the need for duty-cycle spinning along the insertion axis. The control strategy is outlined in two parts: a high-level controller, which provides driving commands to follow a predefined 3D path smoothly; and a low-level controller, able to counteract unmodelled tissue-needle nonlinearities and kinematic model uncertainties. A simulation that mimics the needle's mechanical behavior during insertion is achieved by using an Experimental Fitting Model (EFM), obtained from previous experimental trials. The Simulation results demonstrate the robustness and adaptability of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信