循环开关线性动力系统的结构利用变分推理

Scott W. Linderman, Matthew J. Johnson
{"title":"循环开关线性动力系统的结构利用变分推理","authors":"Scott W. Linderman, Matthew J. Johnson","doi":"10.1109/CAMSAP.2017.8313132","DOIUrl":null,"url":null,"abstract":"Many natural systems, such as neurons firing in the brain or basketball teams traversing a court, give rise to time series data with complex, nonlinear dynamics. We can gain insight into these systems by decomposing the data into segments that are each explained by simpler dynamic units. This is the motivation underlying the class of recurrent switching linear dynamical systems (rSLDS) [1], which build on the standard SLDS by introducing a model of how discrete transition probabilities depend on observations or continuous latent states. Previous work relied on Markov chain Monte Carlo algorithms and augmentation schemes for inference, but these methods only applied to a limited class of recurrent dependencies. Here we relax these constraints and consider recurrent dependencies specified by arbitrary parametric, nonlinear functions. We derive two structure-exploiting variational inference algorithms for these challenging models. Both leverage the conditionally linear Gaussian and Markovian nature of the models to perform efficient posterior inference.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Structure-Exploiting variational inference for recurrent switching linear dynamical systems\",\"authors\":\"Scott W. Linderman, Matthew J. Johnson\",\"doi\":\"10.1109/CAMSAP.2017.8313132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many natural systems, such as neurons firing in the brain or basketball teams traversing a court, give rise to time series data with complex, nonlinear dynamics. We can gain insight into these systems by decomposing the data into segments that are each explained by simpler dynamic units. This is the motivation underlying the class of recurrent switching linear dynamical systems (rSLDS) [1], which build on the standard SLDS by introducing a model of how discrete transition probabilities depend on observations or continuous latent states. Previous work relied on Markov chain Monte Carlo algorithms and augmentation schemes for inference, but these methods only applied to a limited class of recurrent dependencies. Here we relax these constraints and consider recurrent dependencies specified by arbitrary parametric, nonlinear functions. We derive two structure-exploiting variational inference algorithms for these challenging models. Both leverage the conditionally linear Gaussian and Markovian nature of the models to perform efficient posterior inference.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

许多自然系统,如大脑中的神经元活动或篮球队穿越球场,都会产生具有复杂非线性动态的时间序列数据。我们可以通过将数据分解成由更简单的动态单元解释的部分来深入了解这些系统。这就是循环开关线性动力系统(rSLDS)[1]的动机,它通过引入离散跃迁概率如何依赖于观测或连续潜在状态的模型,建立在标准SLDS的基础上。以前的工作依赖于马尔可夫链蒙特卡罗算法和增强方案进行推理,但这些方法仅适用于有限类别的循环依赖关系。这里我们放宽这些约束,并考虑由任意参数非线性函数指定的循环依赖。我们为这些具有挑战性的模型推导了两种利用结构的变分推理算法。两者都利用模型的条件线性高斯和马尔可夫性质来执行有效的后验推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Exploiting variational inference for recurrent switching linear dynamical systems
Many natural systems, such as neurons firing in the brain or basketball teams traversing a court, give rise to time series data with complex, nonlinear dynamics. We can gain insight into these systems by decomposing the data into segments that are each explained by simpler dynamic units. This is the motivation underlying the class of recurrent switching linear dynamical systems (rSLDS) [1], which build on the standard SLDS by introducing a model of how discrete transition probabilities depend on observations or continuous latent states. Previous work relied on Markov chain Monte Carlo algorithms and augmentation schemes for inference, but these methods only applied to a limited class of recurrent dependencies. Here we relax these constraints and consider recurrent dependencies specified by arbitrary parametric, nonlinear functions. We derive two structure-exploiting variational inference algorithms for these challenging models. Both leverage the conditionally linear Gaussian and Markovian nature of the models to perform efficient posterior inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信